Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 020202    DOI: 10.1088/1674-1056/19/2/020202
GENERAL Prev   Next  

Existence and asymptotic estimates of periodic solutions of El Niño mechanism of atmospheric physics

Li Xiao-Jing(李晓静)
College of Mathematics and Physics, Jiangsu Teachers University of Technology, Changzhou 213001, China
Abstract  This paper is devoted to studying the El Niño mechanism of atmospheric physics. The existence and asymptotic estimates of periodic solutions for its model are obtained by employing the technique of upper and lower solution, and using the continuation theorem of coincidence degree theory.
Keywords:  nonlinear      time delay      El Niño phenomenon      periodic solution  
Received:  14 September 2008      Revised:  14 January 2009      Accepted manuscript online: 
PACS:  92.60.Bh (General circulation)  
  92.60.Cc (Ocean/atmosphere interactions, air/sea constituent fluxes)  
  92.05.Hj (Physical and chemical properties of seawater)  
  93.30.Pm (Pacific Ocean)  
  92.10.am (El Nino Southern Oscillation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 40676016), the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK2009105 and BK2008119), the Natural Science Foundation of Jiangsu Education Committee, China (Grant Nos. 09kjd110001 and 08kjb110011), Key Natural Science Foundation by the Bureau of Education of Anhui Province of China (Grant No. KJ2008A05ZC) and Jiangsu Teachers University of Technology Foundation (Grant No. KYY08033).

Cite this article: 

Li Xiao-Jing(李晓静) Existence and asymptotic estimates of periodic solutions of El Niño mechanism of atmospheric physics 2010 Chin. Phys. B 19 020202

[1] McPhaden M J and Zhang D 2002 Nature 4 15 603
[2] Gu D F and Philander S G H 1997 Science 2 75805
[3] Feng G L, Dong W J, Jia X J and Cao H X 2002 Acta Phys. Sin. 51 1181 (in Chinese)
[4] Liu S K, Fu Z T, Liu S D and Zhao Q 2002 Acta Phys. Sin. 51 10 (in Chinese)
[5] Wang C Z 2001 Advances in Atmospheric Sciences 18 674
[6] A n S I and Wang B 2000 J. Climate 1 32044
[7] Mo J Q, Lin W T and Zhu J 2004 Acta Phys. Sin. 53 3245 (in Chinese)
[8] Mo J Q and Lin W T 2005 Acta Phys. Sin. 54 993 (in Chinese)
[9] Mo J Q and Lin W T 2005 Acta Phys. Sin. 54 1081 (in Chinese)
[10] Mo J Q and Lin W T 2005 Chin. Phys. 14875
[11] Mo J Q, Wang H and Lin W T 2006 Acta Phys. Sin. 55 3229 (in Chinese)
[12] Mo J Q, Lin W T and Wang H 2007 Chin. Phys. 16 578
[13] Mo J Q, Lin W T and Lin Y H 2007 Chin. Phys. 16 1908
[14] Mo J Q and Lin W T 2007 Acta Phys. Sin. 56 5565 (in Chinese)
[15] Mo J Q, Lin Y H and Lin W T 2005 Acta Phys. Sin. 54 3971 (in Chinese)
[16] Lin W T, Ji Z Z, Wang B and Zhang X 2002 Progress in Natural Sci. 12 102
[17] Lin W T and Mo J Q 2004 Chin. Sci. Bull. 48 II 5
[18] Lin Y H, Ji Z Z and Zeng Q C 1999 Progress in Natural Sci. 9 532
[19] Lin Y H, Xue F and Lian S M 2001 Chinese J. Atmospheric Sci. 25 111
[20] Lin Y H and Fu Y F 2001 Acta Meteorologica Sin. 59 1
[21] Li X J 2007 Chin. Phys. 16 2837
[22] Li X J 2008 Chin. Phys. B 17 1946
[ 23] Li X J 2008 Acta Phys. Sin. 57 5366 (in Chinese)
[24] Gaines R E and Mawhin J L 1977 Coincidence Degree andNonlinear Differential Equations(Berlin: Springer)
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[4] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[7] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[8] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[9] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[10] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[11] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[12] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[13] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[14] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[15] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
No Suggested Reading articles found!