Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 124204    DOI: 10.1088/1674-1056/19/12/124204
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Nonlinear interactions and quantum entanglement for collective fields in near-resonantly driven systems

Zhang Xiu(张秀)a)b), Hu Xiang-Ming(胡响明)a), Zhang Xue-Hua(张雪华)a), and Wang Fei(王飞)a)
a Department of Physics, Huazhong Normal University, Wuhan 430079, China; b Department of Physics, Xiaogan University, Xiaogan 432000, China
Abstract  This paper proposes a novel form of multimode nonlinear interactions by using a near-resonantly dressed atomic ensemble in an optical cavity. Due to quantum interference, a pair of collective fields come into the bilinear interactions, whose strengths are proportional to the population difference between dressed states which are coupled to the collective fields. By such an interaction, it is possible to obtain perfect multimode squeezing and collective Einstein–Podolsky–Rosen (EPR) entanglement in the cavity output.
Keywords:  collective parametric interaction      quantum interference      collective EPR entanglement      multimode squeezing  
Received:  14 April 2010      Revised:  19 May 2010      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60778005).

Cite this article: 

Zhang Xiu(张秀), Hu Xiang-Ming(胡响明), Zhang Xue-Hua(张雪华), and Wang Fei(王飞) Nonlinear interactions and quantum entanglement for collective fields in near-resonantly driven systems 2010 Chin. Phys. B 19 124204

[1] Boyd R W 1992 Nonlinear Optics (Boston: Academic)
[2] Reynaud S, Fabre C and Giacobino E 1987 J. Opt. Soc. Am. B 4 1520
[3] Caves C M and Crouch D D 1987 J. Opt. Soc. Am. B 4 1535
[4] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[5] Wu L A, Kimble H J, Hall J L and Wu H F 1986 Phys. Rev. Lett. 57 2520
[6] Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys. Rev. Lett. 68 3663
[7] Aoki T, Takei N, Yonezawa H, Wakui K, Hiraoka T and Furusawa A 2003 Phys. Rev. Lett. 91 080404
[8] Su X L, Tan A H, Jia X J, Zhang J, Xie C D and Peng K C 2007 Phys. Rev. Lett. 98 070502
[9] Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D and Peng K C 2003 Phys. Rev. Lett. 90 167903
[10] Guo J, Zou H X, Zhai Z H, Zhang J X and Gao J R 2005 Phys. Rev. A 71 034305
[11] Prado F O, Almeida N G de, Moussa M H Y and Villas-Boas C J 2006 Phys. Rev. A 73 043803
[12] Villas-Boas C J, de Almeida N G, Serra R M and Moussa M H Y 2003 Phys. Rev. A 68 061801
[13] Guzman R, Retamal J C, Solano E and Zagury N 2006 Phys. Rev. Lett. 96 010502
[14] Zhao C Y and Tan W H 2007 Chin. Phys. 16 644
[15] Kuang M H, Ma S J, Liu D M and Wang S J 2009 Chin. Phys. B 18 1065
[16] Amon A, Suret P, Bielawski S, Derozier D and Lefranc M 2009 Phys. Rev. Lett. 102 183901
[17] Avenhaus M, Coldenstrodt-Ronge H B, Laiho K, Mauerer W, Walmsley I A and Silberhorn C 2008 Phys. Rev. Lett. 101 053601
[18] Gatti A, Zambrini R, Miguel M S and Lugiato L A 2003 Phys. Rev. A 68 053807
[19] Bradley A S, Olsen M K, Pfister O and Pooser R C 2008 Phys. Rev. A 72 053805
[20] Leng H Y, Wang J F, Yu Y B, Yu X Q, Xu P, Xie Z D, Zhao J S and Zhu S N 2009 Phys. Rev. A 79 032337
[21] Kofler J, Vedral V, Kim M S and Brukner C 2006 Phys. Rev. A 73 052107
[22] Wang F, Hu X M, Shi W X and Zhu Y Z 2010 Phys. Rev. A 81 033836
[23] Zhang X and Hu X M 2010 Phys. Rev. A 81 013811
[24] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
[25] Hu X M and Li X 2010 J. Phys. B 43 055502
[26] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[27] Scully M O 1985 Phys. Rev. Lett. 55 2802
[28] Scully M O and Zubairy M S 1987 Phys. Rev. A 35 752
[29] Bergou J A, Orszag M and Scully M O 1988 Phys. Rev. A 38 754
[30] Lu N 1992 Phys. Rev. A 45 8154
[31] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1992 Atom-Photon Interactions (New York: Wiley)
[32] James D F V 2000 Fortschr. Phys. 48 823
[33] Lewenstein M, Zhu Y and Mossberg T W 1990 Phys. Rev. Lett. 64 3131
[34] Andersen O K, Lenstra D and Stolte S 1999 Phys. Rev. A 60 1672
[35] Gardiner C W and Zoller P 2000 Quantum Noise (Berlin: Springer-Verlag)
[36] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[3] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[4] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[5] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[6] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[7] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[8] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[9] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[10] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[11] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[12] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[13] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[14] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[15] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
No Suggested Reading articles found!