|
|
Passive decoy state SARG04 quantum-key-distribution with practical photon-number resolving detectors |
Xu Fang-Xing(许方星), Wang Shuang(王双), Han Zheng-Fu(韩正甫)†ger, and Guo Guang-Can(郭光灿) |
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract SARG04 protocol has its advantages in defending photon number splitting attack, benefited from two-photon pulses part. In this paper, we present a passive decoy state SARG04 scheme combining with practical photon number resolving (PNR) detectors. Two kinds of practical detectors, transition-edge sensor and time-multiplexing detector, are taken into consideration. Theoretical analysis shows that both of them are compatible with the passive decoy state SARG04. Compared with the original SARG04, two detectors can boost the key generation rate and maximal secure distance obviously. Meanwhile, the result shows that quantum efficiency and dark count of the detector influence the maximal distance slightly, which indicates the prospect of implementation in real quantum key distribution system with imperfect practical PNS detectors.
|
Received: 25 March 2010
Revised: 11 May 2010
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2006CB921900), the National Natural Science Foundation of China (Grant Nos. 60537020 and 60621064) and the Innovation Funds of the Chinese Academy of Sciences. |
Cite this article:
Xu Fang-Xing(许方星), Wang Shuang(王双), Han Zheng-Fu(韩正甫), and Guo Guang-Can(郭光灿) Passive decoy state SARG04 quantum-key-distribution with practical photon-number resolving detectors 2010 Chin. Phys. B 19 100312
|
[1] |
Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE) pp. 175--179.
|
[2] |
Ekert A K 1991 Phys. Rev. Lett. bf67 661
|
[3] |
Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. bf74 145
|
[4] |
Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 2
|
[5] |
Inoue K, Waks E and Yamamoto Y 2002 Phys. Rev. Lett. 89 037902
|
[6] |
Stucki D, Barreiro C, Fasel S, Gautier J D, Gay O, Gisin N, Thew R, Thoma Y, Trinkler P, Vannel F and Zbinden H 2009 Opt. Express 17 13326
|
[7] |
Zhang J, Wang F Q, Zhao F, Lu Y Q and Liu S H 2008 Acta Phys. Sin. 57 4941 (in Chinese)
|
[8] |
Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
|
[9] |
Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
|
[10] |
Lütkenhaus N 2000 Phys. Rev. A 61 052304
|
[11] |
Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum Information and Computation 4 325
|
[12] |
Hwang W Y 2003 Phys. Rev. Lett. 91 057901
|
[13] |
Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
|
[14] |
Wang X B 2005 Phys. Rev. Lett. 94 230503
|
[15] |
Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
|
[16] |
Yin Z Q, Han Z F, Sun F W and Guo G C 2007 Phys. Rev. A 76 014304
|
[17] |
Wang Q, Wang X B and Guo G C 2007 Phys. Rev. A 75 012312
|
[18] |
Ma X F and Lo H K 2008 New J. Phys. 10 073018
|
[19] |
Mi J L, Wang F Q, Lin Q Q and Liang R S 2008 Chin. Phys. B 17 1178
|
[20] |
Liang R S, Lin Q Q, Liu S H, Mi J L and Wang F Q 2008 Acta Phys. Sin. 57 678 (in Chinese)
|
[21] |
Hu H P, Huang Y X, Liu S H, Lu W and Wang J D 2010 Acta Phys. Sin. 59 287 (in Chinese)
|
[22] |
Adachi Y, Yamamoto T, Koashi M and Imoto N 2007 Phys. Rev. Lett. 99 180503
|
[23] |
Scarani V, Acin A, Ribordy G and Gisin N 2004 Phys. Rev. Lett. 92 057901
|
[24] |
Tamaki K and Lo H K 2004 arXiv: quant-ph/0412035
|
[25] |
Fung C H F, Tamaki K and Lo H K 2006 Phys. Rev. A 73 012337
|
[26] |
Zhang S L, Zou X B, Li K, Jin C H and Guo G C 2007 Phys. Rev. A 76 044304
|
[27] |
Zhang S L, Ou X B, Jin C H and Guo G C 2008 arXiv: quant-ph/0807.1760
|
[28] |
Irwin K D 1995 Appl. Phys. Lett. 66 1998
|
[29] |
Rosenberg D, Lita A E, Miller A, Nam S and Schwall R 2005 IEEE Trans. Appl. Supercond. 15 575
|
[30] |
Fitch M, Jacobs B, Pittman T and Franson F 2003 Phys. Rev. A 68 043814
|
[31] |
Kardynal B E, Yuan Z L and Shields A J 2008 Nature Photonics 2 425
|
[32] |
Wu G, Jian Y, Wu E and Zeng H P 2009 Opt. Express 17 18782
|
[33] |
Cai Q Y and Tan Y G 2006 Phys. Rev. A 73 032305
|
[34] |
Mauerer W and Silberhorn C 2007 Phys. Rev. A 75 050305
|
[35] |
Horikiri T and Kobayashi T 2006 Phys. Rev. A 73 032331
|
[36] |
Xu F X, Han Z F and Guo G C 2008 Proc. SPIE 7278 72780Y
|
[37] |
Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
|
[38] |
Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K and Yamamoto Y 2007 Nature Photonics 1 343 bibitemAPDpara endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|