Abstract Based on the three-dimensional Liu system with a nonlinear term of square, this paper appends a state variable to the system, and further adds a driving signal of the sine signal to construct a novel 4-demensional nonautonomous hyperchaotic Liu system. The appended variable is formed by the product of the nonlinear quadratic term of the original state variables and the driving signal. Through adjusting the frequency of the driving signal, the system can be controlled to show some different dynamic behaviors. By numerical simulations, the Lyapunov exponent spectrums, bifurcation diagrams and phase diagrams of the novel systems are analyzed. Furthermore, the corresponding hardware circuits are implemented. Both the experimental results and the simulation results confirm that the method is feasible. The method, which adjusts the frequency of the input sine signal to control the system to show different dynamic behaviors, can make the dynamic property of the system become more complex, but easier to be controlled accurately as well.
Received: 07 January 2009
Revised: 10 February 2009
Accepted manuscript online:
Fund: Project supported by the National
Natural Science Foundation of China (Grant No 60572089) and the
Natural Science Foundation of
Chongqing (Grant No CSTC,2008BB2087).
Cite this article:
Luo Xiao-Hua(罗小华) Circuitry implementation of a novel nonautonomous hyperchaotic Liu system based on sine input 2009 Chin. Phys. B 18 3304
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.