Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(7): 2757-2763    DOI: 10.1088/1674-1056/18/7/022
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Investigation of composite electromagnetic scattering from ship-like target on the randomly rough sea surface using FDTD method

Li Juan(李娟), Guo Li-Xin(郭立新), Zeng Hao(曾浩), and Han Xu-Biao(韩旭彪)
School of Science, Xidian University, Xi'an 710071, China
Abstract  Composite electromagnetic scattering from a two-dimensional (2D) ship-like target on a one-dimensional sea surface is investigated by using the finite-difference time-domain (FDTD) method. A uniaxial perfectly matched layer is adopted for truncation of FDTD lattices. The FDTD updated equations can be used for the total computation domain by choosing the uniaxial parameters properly. To validate the proposed numerical technique, a 2D infinitely long cylinder over the sea surface is taken into account first. The variation of angular distribution of the scattering changing with incident angle is calculated. The results show good agreement with the conventional moment method. Finally, the influence of the incident angle, the polarization, and the size of the ship-like target on the composite scattering coefficient is discussed in detail.
Keywords:  finite-difference time-domain      uniaxial perfectly matched layer      sea surface      electromagnetic scattering  
Received:  25 December 2008      Revised:  03 February 2009      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  02.70.Bf (Finite-difference methods)  
  92.10.Hm (Ocean waves and oscillations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60571058), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No 20070701010).

Cite this article: 

Li Juan(李娟), Guo Li-Xin(郭立新), Zeng Hao(曾浩), and Han Xu-Biao(韩旭彪) Investigation of composite electromagnetic scattering from ship-like target on the randomly rough sea surface using FDTD method 2009 Chin. Phys. B 18 2757

[1] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[2] Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure
Wen-Yuan Liao(廖文渊), Jian Li(李健), Chuan-Chuan Li(李川川), Xiao-Feng Guo(郭小峰), Wen-Tao Guo(郭文涛), Wei-Hua Liu(刘维华), Yang-Jie Zhang(张杨杰), Xin Wei(韦欣), Man-Qing Tan(谭满清). Chin. Phys. B, 2020, 29(2): 024201.
[3] Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures
Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛). Chin. Phys. B, 2019, 28(8): 083301.
[4] Reducing the calculation workload of the Green function for electromagnetic scattering in a Schwarzschild gravitational field
Shou-Qing Jia(贾守卿). Chin. Phys. B, 2019, 28(7): 070401.
[5] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[6] Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays
Ying Wang(王莹), Xin-Hua Li(李新化). Chin. Phys. B, 2018, 27(2): 026102.
[7] Polarization ratio characteristics of electromagnetic scattering from sea ice in polar areas
Li Zhao(赵立), Tao Xie(谢涛), Lei Meng(孟雷), William Perrie, Jin-Song Yang(杨劲松), He Fang(方贺), Han Chen(陈韩), Run-Bing Ai(艾润冰). Chin. Phys. B, 2018, 27(12): 124102.
[8] Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays
Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生). Chin. Phys. B, 2018, 27(10): 100204.
[9] Effective dielectric constant model of electromagnetic backscattering from stratified air-sea surface film-sea water medium
Tao Xie(谢涛), William Perrie, He Fang(方贺), Li Zhao(赵立), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2017, 26(5): 054102.
[10] Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method
Xiu-Rong Ma(马秀荣), Lin Xu(徐林), Shi-Yuan Chang(常世元), Shuang-Gen Zhang(张双根). Chin. Phys. B, 2017, 26(4): 044201.
[11] Finite-difference time-domain modeling of curved material interfaces by using boundary condition equations method
Jia Lu(卢佳), Huaichun Zhou(周怀春). Chin. Phys. B, 2016, 25(9): 090203.
[12] Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method
Hu Dou(窦虎), Hongmei Ma(马红梅), Yu-Bao Sun(孙玉宝). Chin. Phys. B, 2016, 25(9): 094221.
[13] Electromagnetic backscattering from one-dimensional drifting fractal sea surface II:Electromagnetic backscattering model
Tao Xie(谢涛), William Perrie, Shang-Zhuo Zhao(赵尚卓), He Fang(方贺), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2016, 25(7): 074102.
[14] A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index
Xu-Feng Li(李旭峰), Wei Peng(彭伟), Ya-Li Zhao(赵亚丽), Qiao Wang(王乔), Ji-Lin Wei(魏计林). Chin. Phys. B, 2016, 25(3): 037303.
[15] A study of the early warning signals of abrupt change in the Pacific decadal oscillation
Wu Hao (吴浩), Hou Wei (侯威), Yan Peng-Cheng (颜鹏程), Zhang Zhi-Sen (张志森), Wang Kuo (王阔). Chin. Phys. B, 2015, 24(8): 089201.
No Suggested Reading articles found!