Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(7): 2499-2503    DOI: 10.1088/1674-1056/17/7/025
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

The theoretic analysis of maskless surface plasmon resonant interference lithography by prism coupling

Fang Liang(方亮)a), Du Jing-Lei(杜惊雷)a), Guo Xiao-Wei(郭小伟)a), Wang Jing-Quan(王景全)a), Zhang Zhi-You(张志友)a), Luo Xian-Gang(罗先刚)b), and Du Chun-Lei(杜春雷)b)
a Physics Department, Sichuan University, Chengdu 610064, China; b Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
Abstract  The use of an attenuated total reflection-coupling mode of prism coated with metal film to excite the interference of the surface plasmon polaritons (SPPs) was proposed for periodic patterning with a resolution of subwavelength scale. High intensity of electric field can be obtained because of the coupling between SPPs and evanescence under a resonance condition, which can reduce exposure time and improve contrast. In this paper, several critical parameters for maskless surface plasmon resonant lithography are described, and the preliminary simulation based on a finite difference time-domain technique agrees well with the theoretical analysis, which demonstrates this scheme and provides the theoretical basis for further experiments.
Keywords:  surface plasmon polaritons (SPPs)      enhancement      interference lithography      resolution  
Received:  05 October 2007      Revised:  16 November 2007      Accepted manuscript online: 
PACS:  42.82.Cr (Fabrication techniques; lithography, pattern transfer)  
  42.79.Bh (Lenses, prisms and mirrors)  
Fund: Project supported by the National Basic Research of China (Grant No 2006CD302900-2), the National Natural Science Foundation of China (Grant No 60676024), and the Specialized Research Fund of China for the Doctoral Program of Higher Education (Grant No 20060610006).

Cite this article: 

Fang Liang(方亮), Du Jing-Lei(杜惊雷), Guo Xiao-Wei(郭小伟), Wang Jing-Quan(王景全), Zhang Zhi-You(张志友), Luo Xian-Gang(罗先刚), and Du Chun-Lei(杜春雷) The theoretic analysis of maskless surface plasmon resonant interference lithography by prism coupling 2008 Chin. Phys. B 17 2499

[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[3] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[4] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[5] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[6] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[7] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
[8] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[9] Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy
Yu-Hua Hang(杭玉桦), Yan Qiu(邱岩), Ying Zhou(周颖), Tao Liu(刘韬), Bin Zhu(朱斌), Kaixing Liao(廖开星), Ming-Xin Shi(时铭鑫), and Fei Xue(薛飞). Chin. Phys. B, 2022, 31(2): 024212.
[10] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[11] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[12] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[13] Two different emission enhancement of trans-stilbene crystal under high pressure: Different evolution of structure
Yarong Gu(古雅荣), Guicheng Shao(邵贵成), Zhumei Tian(田竹梅), Haixia Li(李海霞), Kai Wang(王凯), and Bo Zou(邹勃). Chin. Phys. B, 2022, 31(1): 017901.
[14] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[15] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
No Suggested Reading articles found!