Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(4): 1254-1262    DOI: 10.1088/1674-1056/17/4/018
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Wigner functions and tomograms of the photon-depleted even and odd coherent states

Wang Ji-Suo(王继锁) and Meng Xiang-Guo(孟祥国)
Department of Physics, Liaocheng University, Liaocheng 252059, China
Abstract  Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner functions for the photon-depleted even and odd coherent states (PDEOCSs). Moreover, in terms of the Wigner functions with respect to the complex parameter $\alpha $ the nonclassical properties of the PDEOCSs are discussed. The results show that the nonclassicality for the state $\left| {\beta ,m} \right\rangle _{\rm o} $ (or $\left| {\beta ,m} \right\rangle _{\rm e} )$ is more pronounced when $m$ is even (or odd). According to the marginal distributions of the Wigner functions, the physical meaning of the Wigner functions is given. Further, the tomograms of the PDEOCSs are calculated with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics.
Keywords:  photon-depleted even and odd coherent state      Wigner function      intermediate coordinate-momentum representation      tomogram  
Received:  09 July 2007      Revised:  02 August 2007      Accepted manuscript online: 
PACS:  42.50.Ar  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10574060) and the Natural Science Foundation of Shandong Province of China (Grant No Y2004A09).

Cite this article: 

Wang Ji-Suo(王继锁) and Meng Xiang-Guo(孟祥国) Wigner functions and tomograms of the photon-depleted even and odd coherent states 2008 Chin. Phys. B 17 1254

[1] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[2] Recast combination functions of coordinate and momentum operators into their ordered product forms
Lei Wang(王磊), Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁). Chin. Phys. B, 2020, 29(5): 050303.
[3] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[4] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[5] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[6] Cryo-ET bridges the gap between cell biology and structural biophysics
Xiao-Fang Cheng(程小芳), Rui Wang(王睿), Qing-Tao Shen(沈庆涛). Chin. Phys. B, 2018, 27(6): 066803.
[7] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[8] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[9] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[10] Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach
N Asili Firouzabadi, M K Tavassoly, M J Faghihi. Chin. Phys. B, 2015, 24(6): 064204.
[11] Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties
Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕). Chin. Phys. B, 2014, 23(7): 070301.
[12] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[13] Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state
Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴). Chin. Phys. B, 2013, 22(3): 030311.
[14] A new type of photon-added squeezed coherent state and its statistical properties
Zhou Jun(周军), Fan Hong-Yi(范洪义), and Song Jun(宋军) . Chin. Phys. B, 2012, 21(7): 070301.
[15] Quantum phase distribution and the number–phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems
G. R. Honarasa, M. K. Tavassoly, and M. Hatami . Chin. Phys. B, 2012, 21(5): 054208.
No Suggested Reading articles found!