Please wait a minute...
Chinese Physics, 2005, Vol. 14(7): 1352-1358    DOI: 10.1088/1009-1963/14/7/015
GENERAL Prev   Next  

Bifurcation behaviours of peak current controlled PFC boost converter

Ren Hai-Peng (任海鹏), Liu Ding (刘丁)
School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China
Abstract  Bifurcation behaviours of the peak current controlled power-factor-correction (PFC) boost converter, including fast-scale instability and low-frequency bifurcation, are investigated in this paper. Conventionally, the PFC converter is analysed in continuous conduction mode (CCM). This prevents us from recognizing the overall dynamics of the converter. It has been pointed out that the discontinuous conduction mode (DCM) can occur in the PFC boost converter, especially in the light load condition. Therefore, the DCM model is employed to analyse the PFC converter to cover the possible DCM operation. By this way, the low-frequency bifurcation diagram is derived, which makes the route from period-double bifurcation to chaos clear. The bifurcation diagrams versus the load resistance and the output capacitance also indicate the stable operation boundary of the converter, which is useful for converter design.
Keywords:  peak current control      PFC converter      discontinuous conduction mode      chaos      bifurcation diagram  
Received:  24 December 2004      Revised:  24 April 2005      Accepted manuscript online: 
PACS:  05.45.Vx (Communication using chaos)  
  84.70.+p (High-current and high-voltage technology: power systems; power transmission lines and cables)  
  84.30.Jc (Power electronics; power supply circuits)  
Fund: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 20040700010), and the Natural Science Foundation of Shaanxi Province (GrantNo 2003F028).

Cite this article: 

Ren Hai-Peng (任海鹏), Liu Ding (刘丁) Bifurcation behaviours of peak current controlled PFC boost converter 2005 Chinese Physics 14 1352

[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[7] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[8] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!