Please wait a minute...
Chinese Physics, 2004, Vol. 13(4): 505-509    DOI: 10.1088/1009-1963/13/4/016
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Experimental investigation of the impact on nearby solid boundary during laser-generated bubble collapse

Chen Xiao (陈笑), Xu Rong-Qing (徐荣青), Shen Zhong-Hua (沈中华), Lu Jian (陆建), Ni Xiao-Wu (倪晓武)
Department of Applied Physics, Nanjing University of Science & Technology, Nanjing 210094, China
Abstract  Cavitation damage has been considered as being responsible for many effects in hydraulic machinery and biological medicine. In order to better understand the cavity interaction with nearby solid surfaces, the impact loading induced by the high-speed liquid-jet and subsequent jet flow during the final stage of the bubble collapse in a static fluid is investigated by focusing a Q-switched pulsed laser into water. By means of a new method based on a fibre-coupling optical beam deflection technique, a detailed experimental study has been made to clarify the relationship of the impact pressure against a solid boundary as a function of the dimensionless γ that is generally used to describe the bubble dynamics with its definition $\gamma=s/R_{\max}$ ($R_{\max}$ being the maximum bubble radius and s denoting the distance of the cavity inception from the boundary). The experimental results are shown that for $\gamma$ in the range of about 0.67 to 0.95 with a pulsed laser energy 230mJ, the transient pressure applied on the solid surface is maximum; while for $\gamma>1$ or $\gamma<0.67$, it is gradually decreased. By combination of our experimental results with the other work that detected the acoustic emission during the bubble collapse at different $\gamma$, it is concluded that in this range of 0.67-0.95, the destructive effect due to a liquid-jet and the following jet flow impact actually outweighs the well-known effect of shock wave emission and plays a vital role during the cavitation bubble collapse.
Keywords:  optical beam deflection      laser-generated bubble      liquid-jet      cavitation  
Received:  16 July 2003      Revised:  27 October 2003      Accepted manuscript online: 
PACS:  47.55.dp (Cavitation and boiling)  
  47.55.Dz  
  42.60.Gd (Q-switching)  
  47.27.wg (Turbulent jets)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60208004), the Natural Science Foundation of Jiangsu Province (Grant No BK2001056), the Teaching and Research Award Program for Outstanding Young Professor in Higher Education

Cite this article: 

Chen Xiao (陈笑), Xu Rong-Qing (徐荣青), Shen Zhong-Hua (沈中华), Lu Jian (陆建), Ni Xiao-Wu (倪晓武) Experimental investigation of the impact on nearby solid boundary during laser-generated bubble collapse 2004 Chinese Physics 13 505

[1] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[2] A study of cavitation nucleation in pure water using molecular dynamics simulation
Hua Xie(谢华), Yuequn Xu(徐跃群), and Cheng Zhong(钟成). Chin. Phys. B, 2022, 31(11): 114701.
[3] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
[4] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[5] Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection
Rong Ye(叶荣), Huining Dong(董会宁), Xianyun Wu(吴显云), and Xiang Gao(高翔). Chin. Phys. B, 2021, 30(10): 104209.
[6] Theoretical estimation of sonochemical yield in bubble cluster in acoustic field
Zhuang-Zhi Shen(沈壮志). Chin. Phys. B, 2020, 29(1): 014304.
[7] Theoretical prediction of the yield of strong oxides under acoustic cavitation
Jing Sun(孙晶), Zhuangzhi Shen(沈壮志), Runyang Mo(莫润阳). Chin. Phys. B, 2019, 28(1): 014301.
[8] Impact of cavitation on lesion formation induced by high intensity focused ultrasound
Pengfei Fan(范鹏飞), Jie Yu(于洁), Xin Yang(杨鑫), Juan Tu(屠娟), Xiasheng Guo(郭霞生), Pintong Huang(黄品同), Dong Zhang(章东). Chin. Phys. B, 2017, 26(5): 054301.
[9] Experimental investigation on underwater drag reduction using partial cavitation
Bao Wang(王宝), Jiadao Wang(汪家道), Darong Chen(陈大融), Na Sun(孙娜), Tao Wang(王涛). Chin. Phys. B, 2017, 26(5): 054701.
[10] Study on shock wave-induced cavitation bubbles dissolution process
Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2017, 26(2): 024301.
[11] Nonlinear response of ultrasound contrast agent microbubbles: From fundamentals to applications
Xu-Dong Teng(滕旭东), Xia-Sheng Guo(郭霞生), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2016, 25(12): 124308.
[12] Ultrasound-mediated transdermal drug delivery of fluorescent nanoparticles and hyaluronic acid into porcine skin in vitro
Huan-Lei Wang(王焕磊), Peng-Fei Fan(范鹏飞), Xia-Sheng Guo(郭霞生), Juan Tu(屠娟), Yong Ma(马勇), Dong Zhang(章东). Chin. Phys. B, 2016, 25(12): 124314.
[13] Properties of sound attenuation around a two-dimensional underwater vehicle with a large cavitation number
Ye Peng-Cheng (叶鹏程), Pan Guang (潘光). Chin. Phys. B, 2015, 24(6): 066401.
[14] Study of acoustic bubble cluster dynamics using a lattice Boltzmann model
Mahdi Daemi, Mohammad Taeibi-Rahni, Hamidreza Massah. Chin. Phys. B, 2015, 24(2): 024302.
[15] Quantitative calculation of reaction performance in sonochemical reactor by bubble dynamics
Xu Zheng (徐峥), Yasuda Keiji (安田启司), Liu Xiao-Jun (刘晓峻). Chin. Phys. B, 2015, 24(10): 104301.
No Suggested Reading articles found!