Please wait a minute...
Chinese Physics, 2004, Vol. 13(12): 2182-2186    DOI: 10.1088/1009-1963/13/12/036
RAPID COMMUNICATION Prev  

A new type of Lie symmetrical non-Noether conserved quantity for nonholonomic systems

Luo Shao-Kai (罗绍凯)ab, Huang Fei-Jiang (黄飞江)b, Lu Yi-Bing (卢一兵)b
a Institute of Mathematical Mechanics and Mathematical Physics, Zhejiang University of Sciences, Hangzhou 310018, China; b Institute of Mathematical Mechanics and Mathematical Physics, Changsha University, Changsha 410003, ChinaInstitute of Mathematical Mechanics and Mathematical Physics, Changsha University, Changsha 410003, China
Abstract  For a nonholonomic system, a new type of Lie symmetrical non-Noether conserved quantity is given under general infinitesimal transformations of groups in which time is variable. On the basis of the invariance theory of differential equations of motion under infinitesimal transformations for $t$ and $q_s$, we construct the Lie symmetrical determining equations, the constrained restriction equations and the additional restriction equations of the system. And a new type of Lie symmetrical non-Noether conserved quantity is directly obtained from the Lie symmetry of the system, which only depends on the variables $t$, $q_s$ and $\dot{q}_s$. A series of deductions are inferred for a holonomic nonconservative system, Lagrangian system and other dynamical systems in the case of vanishing of time variation. An example is given to illustrate the application of the results.
Keywords:  nonholonomic system      Lie symmetry      non-Noether conserved quantity  
Received:  02 March 2004      Revised:  23 August 2004      Accepted manuscript online: 
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  02.30.Hq (Ordinary differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10372053), the Natural Science Foundation of Hunan Province (Grant No 03JJY3005), and the Scientific Research Foundation of the Education Bureau of Hunan Province, China (Gran

Cite this article: 

Luo Shao-Kai (罗绍凯), Huang Fei-Jiang (黄飞江), Lu Yi-Bing (卢一兵) A new type of Lie symmetrical non-Noether conserved quantity for nonholonomic systems 2004 Chinese Physics 13 2182

[1] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[2] Quasi-canonicalization for linear homogeneous nonholonomic systems
Yong Wang(王勇), Jin-Chao Cui(崔金超), Ju Chen(陈菊), Yong-Xin Guo(郭永新). Chin. Phys. B, 2020, 29(6): 064501.
[3] Generalized Chaplygin equations for nonholonomic systems on time scales
Shi-Xin Jin(金世欣), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(2): 020502.
[4] Generalized Birkhoffian representation of nonholonomic systems and its discrete variational algorithm
Shixing Liu(刘世兴), Chang Liu(刘畅), Wei Hua(花巍), Yongxin Guo(郭永新). Chin. Phys. B, 2016, 25(11): 114501.
[5] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[6] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[7] Lie symmetries and exact solutions for a short-wave model
Chen Ai-Yong (陈爱永), Zhang Li-Na (章丽娜), Wen Shuang-Quan (温双全). Chin. Phys. B, 2013, 22(4): 040510.
[8] Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices
Zhao Gang-Ling (赵纲领), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Hong Fang-Yu (洪方昱). Chin. Phys. B, 2013, 22(3): 030201.
[9] Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2013, 22(2): 020201.
[10] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
[11] Mei conserved quantity directly induced by Lie symmetry in a nonconservative Hamilton system
Fang Jian-Hui(方建会), Zhang Bin(张斌), Zhang Wei-Wei(张伟伟), and Xu Rui-Li(徐瑞莉) . Chin. Phys. B, 2012, 21(5): 050202.
[12] Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems
Wang Xing-Zhong(王性忠), Fu Hao(付昊), and Fu Jing-Li(傅景礼) . Chin. Phys. B, 2012, 21(4): 040201.
[13] Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet
Eerdunbuhe(额尔敦布和) and Temuerchaolu(特木尔朝鲁) . Chin. Phys. B, 2012, 21(3): 035201.
[14] Lie–Mei symmetry and conserved quantities of the Rosenberg problem
Liu Xiao-Wei(刘晓巍) and Li Yuan-Cheng(李元成). Chin. Phys. B, 2011, 20(7): 070204.
[15] Mei symmetries and Mei conserved quantities for higher-order nonholonomic constraint systems
Jiang Wen-An(姜文安), Li Zhuang-Jun(李状君), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2011, 20(3): 030202.
No Suggested Reading articles found!