Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070204    DOI: 10.1088/1674-1056/21/7/070204
GENERAL Prev   Next  

Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system

Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林)
School of Science, Jiangnan University, Wuxi 214122, China
Abstract  A weakly nonholonomic system is a nonholonomic system whose constraint equations contain a small parameter. The form invariance and the approximate conserved quantity of the Appell equations for a weakly nonholonomic system are studied. The Appell equations for the weakly nonholonomic system are established, and the definition and the criterion of form invariance of the system are given. The structure equation of form invariance for the weakly nonholonomic system and the approximate conserved quantity deduced from the form invariance of the system are obtained. Finally, an example is given to illustrate the application of the results.
Keywords:  weakly nonholonomic system      Appell equations      form invariance      approximate conserved quantity  
Received:  26 November 2011      Revised:  22 December 2011      Accepted manuscript online: 
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  03.50.-z (Classical field theories)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11142014 and 61178032).
Corresponding Authors:  Jia Li-Qun     E-mail:  jlq0000@163.com

Cite this article: 

Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system 2012 Chin. Phys. B 21 070204

[1] Neimark J I and Fufaev N A 1972 Dynamics of Nonholonomic Systems (Providence: AMS)
[2] Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[3] Bloch A M, Krishnaprasad P S, Marsden J E and Murray R M 1996 Arch. Rat. Mech. Anal. 136 21
[4] Papastavridis J G 1998 Appl. Mech. Rev. 51 239
[5] Ostrovskaya S and Angels J 1998 Appl. Mech. Rev. 51 415
[6] Mei F X 2000 Appl. Mech. Rev. 53 283
[7] Guo Y X, Luo S K and Mei F X 2004 Advances in Mechanics 34 477 (in Chinese)
[8] Zegzhda S A, Soltakhanov S K and Yushkov M P 2005 Equations of Motion of Nonholonomic Systems and Variational Principles of Mechanics. New Kind of Control Problems (Moscow: FIMATLIT) (in Russian)
[9] Mei F X 2000 J. Beijing Institute of Technology 9 120
[10] Wang S Y and Mei F X 2002 Chin. Phys. 11 5
[11] Zhang H B 2002 Chin. Phys. 11 765
[12] Zhang Y and Mei F X 2003 Chin. Phys. 12 1058
[13] Luo S K 2003 Acta Phys. Sin. 52 2941 (in Chinese)
[14] Fu J L, Chen L Q and Xie F P 2004 Chin. Phys. 13 1611
[15] Wu H B 2005 Chin. Phys. 14 452
[16] Lou Z M 2005 Chin. Phys. 14 660
[17] Fang J H, Peng Y and Liao Y P 2005 Acta Phys. Sin. 54 496 (in Chinese)
[18] Chen X W, Liu C M and Li Y M 2006 Chin. Phys. 15 470
[19] Liu H J, Fu J L and Tang Y F 2007 Chin. Phys. 16 599
[20] Luo S K, Chen X W and Guo Y X 2007 Chin. Phys. 16 3176
[21] Zheng S W, Xie J F and Chen W C 2008 Chin. Phys. Lett. 25 809
[22] Cai J L, Luo S K and Mei F X 2008 Chin. Phys. B 17 3170
[23] Cai J L and Mei F X 2008 Acta Phys. Sin. 57 5369 (in Chinese)
[24] Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese)
[25] Li Y C, Xia L L and Wang X M 2009 Acta Phys. Sin. 58 6732 (in Chinese)
[26] Zheng S W, Xie J F, Chen X W and Du X L 2010 Acta Phys. Sin. 59 5209 (in Chinese)
[27] Jia L Q, Xie Y L, Zhang Y Y, Cui J C and Yang X F 2010 Acta Phys. Sin. 59 7552 (in Chinese)
[28] Jiang W A and Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese)
[29] Zhang M L, Sun X T, Wang X X, Xie Y L and Jia L Q 2011 Chin. Phys. B 20 110202
[30] Jiang W A and Luo S K 2011 Nonlinear Dyn. 67 475
[31] Mei F X 1989 J. Beijing Institute of Technology 9 10 (in Chinese)
[32] Mei F X 1993 Chin. Sci. Bull. 38 281 (in Chinese)
[33] Mei F X 1995 J. Beijing Institute of Technology 15 237 (in Chinese)
[34] Ge W K 2009 Acta Phys. Sin. 58 6729 (in Chinese)
[35] Jia L Q, Xie J F and Zheng S W 2008 Chin. Phys. B 17 17
[36] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[1] Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion
Zhang Mei-Ling (张美玲), Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群). Chin. Phys. B, 2012, 21(10): 100203.
[2] The approximate conserved quantity of the weakly nonholonomic mechanical-electrical system
Liu Xiao-Wei(刘晓巍), Li Yuan-Cheng(李元成), and Xia Li-Li(夏丽莉) . Chin. Phys. B, 2011, 20(7): 070203.
[3] Special Lie symmetry and Hojman conserved quantity of Appell equations in a dynamical system of relative motion
Xie Yin-Li(解银丽), Jia Li-Qun(贾利群), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2011, 20(1): 010203.
[4] Form invariance and new conserved quantity of generalised Birkhoffian system
Mei Feng-Xiang(梅凤翔) and Wu Hui-Bin(吴惠彬). Chin. Phys. B, 2010, 19(5): 050301.
[5] Three-order form invariance and conserved quantity
Yang Xue-Hui(杨学慧) and Ma Shan-Jun(马善钧). Chin. Phys. B, 2006, 15(8): 1672-1677.
[6] Lie-form invariance of nonholonomic mechanical systems
Xia Li-Li (夏丽莉), Wang Jing (王静), Hou Qi-Bao (后其宝), Li Yuan-Cheng (李元成). Chin. Phys. B, 2006, 15(3): 467-469.
[7] New non-Noether conserved quantities of mechanical system in phase space
Yan Xiang-Hong (闫向宏), Fang Jian-Hui (方建会). Chin. Phys. B, 2006, 15(10): 2197-2201.
[8] The parametric orbits and the form invariance of three-body in one-dimension
Lou Zhi-Mei (楼智美). Chin. Phys. B, 2005, 14(4): 660-662.
[9] Form invariances and Lutzky conserved quantities for Lagrange systems
Mei Feng-Xiang (梅凤翔), Xu Xue-Jun (许学军). Chin. Phys. B, 2005, 14(3): 449-451.
[10] Form invariance of Raitzin's canonical equations of a nonholonomic mechanical system
Qiao Yong-Fen (乔永芬), Li Ren-Jie (李仁杰), Ma Yong-Sheng (马永胜). Chin. Phys. B, 2005, 14(1): 12-16.
[11] Form invariance and conserved quantities of Nielsen equations of relativistic variable mass nonholonomic systems
Qiao Yong-Fen (乔永芬), Zhao Shu-Hong (赵淑红), Li Ren-Jie (李仁杰). Chin. Phys. B, 2004, 13(3): 292-296.
[12] Non-Noether conserved quantity constructed by using form invariance for Birkhoffian system
Xu Xue-Jun (许学军), Mei Feng-Xiang (梅凤翔), Qin Mao-Chang (秦茂昌). Chin. Phys. B, 2004, 13(12): 1999-2002.
[13] Form invariance for systems of generalized classical mechanics
Zhang Yi (张毅), Mei Feng-Xiang (梅凤翔). Chin. Phys. B, 2003, 12(10): 1058-1061.
[14] Form invariance and Lie symmetry of equations of non-holonomic systems
Wang Shu-Yong (王树勇), Mei Feng-Xiang (梅凤翔). Chin. Phys. B, 2002, 11(1): 5-8.
[15] ON THE FORM INVARIANCE OF NIELSEN EQUATIONS
Wang Shu-yong (王树勇), Mei Feng-xiang (梅凤翔). Chin. Phys. B, 2001, 10(5): 373-375.
No Suggested Reading articles found!