Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040201    DOI: 10.1088/1674-1056/21/4/040201
GENERAL   Next  

Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems

Wang Xing-Zhong(王性忠)a), Fu Hao(付昊)b), and Fu Jing-Li(傅景礼)a)†
a. Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China;
b. China Jingye Engineering Corporation Limited Shenzhen Branch, Shenzhen 518054, China
Abstract  This paper focuses on studying Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems. Firstly, the discrete generalized Hamiltonian canonical equations and discrete energy equation of nonholonomic Hamiltonian systems are derived from discrete Hamiltonian action. Secondly, the determining equations and structure equation of Lie symmetry of the system are obtained. Thirdly, the Lie theorems and the conservation quantities are given for the discrete nonholonomic Hamiltonian systems. Finally, an example is discussed to illustrate the application of the results.
Keywords:  Lie symmetry      nonholonomic constraint      discrete Hamiltonian system      conserved quantity  
Received:  16 July 2011      Revised:  19 September 2011      Accepted manuscript online: 
PACS:  02.20.-a (Group theory)  
  02.30.Ik (Integrable systems)  
  02.30.Ks (Delay and functional equations)  
Fund: Project supported by the National Natural Science Foundations of China (Grant No. 11072218) and the Natural Science Foundation of Zhejiang Province of China (Grant No. Y6110314)
Corresponding Authors:  Fu Jing-Li, E-mail:sqfujingli@163.com     E-mail:  sqfujingli@163.com

Cite this article: 

Wang Xing-Zhong(王性忠), Fu Hao(付昊), and Fu Jing-Li(傅景礼) Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems 2012 Chin. Phys. B 21 040201

[1] Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer)
[2] Ibragimov N H 1985 Transformation Groups Applied to Mathematical Physics (Boton: Reidel)
[3] Bluman G W and Kumei S 1989 Symmetries of Differential Equations (Berlin: Springer)
[4] Hydon P 1999 Symmetry Methods for Ordinary Differential Equations (Cambridge: Cambridge University Press)
[5] Mei F X 1999 Applications of Lie Group and Lie Algebra to Constraint Mechanical Systems (Beijing: Science Press)
[6] Guo Y X, Jing L Y and Yu Y 2001 Chin. Phys. 10 181
[7] Zhang Y, Shang M and Mei F X 2000 Chin. Phys. 9 401
[8] Liu R W and Chen L Q 2004 Chin. Phys. 13 1615
[9] Zhang H B, Chen L Q and Liu R W 2005 Chin. Phys. 14 1063
[10] Fang J H 2002 Chin. Phys. 11 313
[11] Maeda S 1980 Math. Jpn. 25 405
[12] Ge W K 2008 Acta Phys. Sin. 57 6714 (in Chinese)
[13] Liu X W and Li Y C 2011 Acta Phys. Sin. 60 111102 (in Chinese)
[14] Fang J H 2010 Chin. Phys. B 19 040301
[15] Shang M, Guo Y X and Mei F X 2007 Chin. Phys. 16 292
[16] Levi D and Winternitz P 1991 Phys. Lett. A 152 335
[17] Levi D and Winternitz P 1993 J. Math. Phys. 34 3713
[18] Floreanini R and Vinet L 1995 J. Math. Phys. 36 7024
[19] Dorodnitsyn V 1991 J. Sov. Math. 55 1490
[20] Dorodnitsyn V 1993 Okl. Akad. Nauk. 328 678
[21] Dorodnitsyn V 2001 Appl. Numer. Math. 307 321
[22] Dorodnitsyn V 1998 Int. J. Mod. Phys. 5 723
[23] Budd C and Dorodnitsyn V 2001 J. Phys. A: Math. Gen. 34 10387
[24] Levi D and Winternitz P 1996 J. Math. Phys. 37 5551
[25] Hernandez H R, Levi D and Winternitz P 1999 J. Phys. A: Math. Gen. 32 2685
[26] Hydon P 2000 Proc. R. Soc. A 456 2835
[27] Dorodnitsyn V, Roman Kozlov R and Winternitz P 2004 J. Math. Phys. 45 336
[28] Fu J L, Chen B Y and Chen L Q 2009 Phys. Lett. A 373 409
[29] Dorodnitsyn V, Kozlov R and Winternitz P 2000 J. Math. Phys. 41 480
[30] Shi S Y, Huang X H, Zhang X B and Jin L 2009 Acta Phys. Sin. 58 3625 (in Chinese)
[31] Dorodnitsyn V and Kozlov R 2009 Math. Theor. 42 454007
[32] Fu J L, Chen L Q and Chen B Y 2010 Sci. Chin. A: Phys. Mech. Astron. 53 1687
[33] Fu J L, Chen L Q and Chen B Y 2010 Sci. Chin. A: Phys. Mech. Astron. 53 545
[34] Fu J L, Li X W, Li C R, Zhao W J and Chen B Y 2010 Sci. Chin. A: Phys. Mech. Astron. 53 1699
[35] Levi D and Winternitz P 1993 J. Math. Phys. 34 3713
[36] Marsden J E and West M 2001 Discrete Mechanics and Variational Integrators (Cambridge: Cambridge University Press)
[37] Guo H Y and Wu K 2003 J. Math. Phys. 44 5978
[1] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[2] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[3] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[4] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[5] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[6] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin (金世欣), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(5): 054501.
[7] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[8] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[9] Lie symmetries and exact solutions for a short-wave model
Chen Ai-Yong (陈爱永), Zhang Li-Na (章丽娜), Wen Shuang-Quan (温双全). Chin. Phys. B, 2013, 22(4): 040510.
[10] Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2013, 22(2): 020201.
[11] Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems
Chen Rong (陈蓉), Xu Xue-Jun (许学军). Chin. Phys. B, 2012, 21(9): 094501.
[12] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao (崔金超), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群 ). Chin. Phys. B, 2012, 21(8): 080201.
[13] Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices
Xia Li-Li(夏丽莉) and Chen Li-Qun(陈立群) . Chin. Phys. B, 2012, 21(7): 070202.
[14] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
[15] Symmetry of Lagrangians of holonomic nonconservative system in event space
Zhang Bin(张斌), Fang Jian-Hui(方建会), and Zhang Wei-Wei(张伟伟) . Chin. Phys. B, 2012, 21(7): 070208.
No Suggested Reading articles found!