Please wait a minute...
Chinese Physics, 2001, Vol. 10(6): 550-554    DOI: 10.1088/1009-1963/10/6/316
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

THE LAX PAIR FOR C2-TYPE RUIJSENAARS-SCHNEIDER MODEL

Chen Kai (陈凯), Hou Bo-yu (侯伯宇), Yang Wen-li (杨文力)
Institute of Modern Physics, Northwest University, Xi'an 710069, China
Abstract  We study the C2 Ruijsenaars-Schneider model with interaction potential of trigonometric type. The Lax pairs for the model with and without spectral parameters are constructed. Also given are the involutive Hamiltonians for the system. Taking a non-relativistic limit, we obtain the Lax pair of C2 Calogero-Moser model.
Keywords:  Lax pair      Ruijsenaars-Schneider model  
Received:  08 October 2000      Revised:  05 January 2001      Accepted manuscript online: 
PACS:  02.10.Yn (Matrix theory)  
  02.10.Ud (Linear algebra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 19805006).

Cite this article: 

Chen Kai (陈凯), Hou Bo-yu (侯伯宇), Yang Wen-li (杨文力) THE LAX PAIR FOR C2-TYPE RUIJSENAARS-SCHNEIDER MODEL 2001 Chinese Physics 10 550

[1] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[2] Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg-de Vries equation
Yulei Cao(曹玉雷), Peng-Yan Hu(胡鹏彦), Yi Cheng(程艺), and Jingsong He(贺劲松). Chin. Phys. B, 2021, 30(3): 030503.
[3] A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures
Sen-Yue Lou(楼森岳). Chin. Phys. B, 2020, 29(8): 080502.
[4] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[5] A note on “Lattice soliton equation hierarchy and associated properties”
Xi-Xiang Xu(徐西祥), Min Guo(郭敏). Chin. Phys. B, 2019, 28(1): 010202.
[6] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[7] Non-autonomous discrete Boussinesq equation:Solutions and consistency
Nong Li-Juan (农丽娟), Zhang Da-Juan (张大军). Chin. Phys. B, 2014, 23(7): 070202.
[8] Riccati-type Bäcklund transformations of nonisospectral and generalized variable-coefficient KdV equations
Yang Yun-Qing (杨云青), Wang Yun-Hu (王云虎), Li Xin (李昕), Cheng Xue-Ping (程雪苹). Chin. Phys. B, 2014, 23(3): 030506.
[9] Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrödinger equation
Tao Yong-Sheng (陶勇胜), He Jing-Song (贺劲松), K. Porsezian. Chin. Phys. B, 2013, 22(7): 074210.
[10] Integrability of extended (2+1)-dimensional shallow water wave equation with Bell polynomials
Wang Yun-Hu (王云虎), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(5): 050509.
[11] Finite symmetry transformation group of the Konopelchenko–Dubrovsky equation from its Lax pair
Hu Han-Wei(胡瀚玮) and Yu Jun(俞军) . Chin. Phys. B, 2012, 21(2): 020202.
[12] Binary Bell polynomial application in generalized (2+1)-dimensional KdV equation with variable coefficients
Zhang Yi(张翼), Wei Wei-Wei(魏薇薇), Cheng Teng-Fei(程腾飞), and Song Yang(宋洋) . Chin. Phys. B, 2011, 20(11): 110204.
[13] Prolongation structure of the variable coefficient KdV equation
Yang Yun-Qing(杨云青) and Chen Yong(陈勇) . Chin. Phys. B, 2011, 20(1): 010206.
[14] Finite symmetry transformation groups and exact solutions of Lax integrable systems
Ma Hong-Cai (马红彩), Lou Sen-Yue (楼森岳). Chin. Phys. B, 2005, 14(8): 1495-1500.
No Suggested Reading articles found!