Please wait a minute...
Chinese Physics, 2001, Vol. 10(12): 1103-1105    DOI: 10.1088/1009-1963/10/12/303
GENERAL Prev   Next  

LATTICE BOLTZMANN EQUATION MODEL IN THE CORIOLIS FIELD

Feng Shi-de (冯士德), Mao Jiang-yu (毛江玉), Zhang Qiong (张琼)
State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  In a large-scale field of rotational fluid, various unintelligible and surprising dynamic phenomena are produced due to the effect of the Coriolis force. The lattice Boltzmann equation (LBE) model in the Coriolis field is developed based on previous works.[1-4] Geophysical fluid dynamics equations are derived from the model. Numerical simulations have been made on an ideal atmospheric circulation of the Northern Hemisphere by using the model and they reproduce the Rossby wave motion well. Hence the applicability of the model is verified in both theory and experiment.
Keywords:  distribution function      Coriolis force      geophysical hydrodynamic equations  
Received:  23 June 2001      Revised:  05 September 2001      Accepted manuscript online: 
PACS:  05.60.-k (Transport processes)  
  47.11.+j  
  47.85.Dh (Hydrodynamics, hydraulics, hydrostatics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 49823002, 40005005, 7-200053, 4-200060), and by the State Key Development Programme for Basic Research of China (Grant No. G1998040904).

Cite this article: 

Feng Shi-de (冯士德), Mao Jiang-yu (毛江玉), Zhang Qiong (张琼) LATTICE BOLTZMANN EQUATION MODEL IN THE CORIOLIS FIELD 2001 Chinese Physics 10 1103

[1] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[2] Nonclassicality of photon-modulated spin coherent states in the Holstein—Primakoff realization
Xiaoyan Zhang(张晓燕), Jisuo Wang(王继锁), Lei Wang(王磊),Xiangguo Meng(孟祥国), and Baolong Liang(梁宝龙). Chin. Phys. B, 2022, 31(5): 054205.
[3] Pair distribution function analysis: Fundamentals and application to battery materials
Xuelong Wang(王雪龙), Sha Tan(谭莎), Xiao-Qing Yang(杨晓青), Enyuan Hu(胡恩源). Chin. Phys. B, 2020, 29(2): 028802.
[4] Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields
M Eshghi, R Sever, S M Ikhdair. Chin. Phys. B, 2018, 27(2): 020301.
[5] Atomic pair distribution function method development at the Shanghai Synchrotron Radiation Facility
Xiao-Juan Zhou(周晓娟), Ju-Zhou Tao(陶举洲), Han Guo(郭瀚), He Lin(林鹤). Chin. Phys. B, 2017, 26(7): 076101.
[6] Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields
M Eshghi, H Mehraban, S M Ikhdair. Chin. Phys. B, 2017, 26(6): 060302.
[7] Degree of polarization based on the three-component pBRDF model for metallic materials
Kai Wang(王凯), Jing-Ping Zhu(朱京平), Hong Liu(刘宏). Chin. Phys. B, 2017, 26(2): 024210.
[8] Model of bidirectional reflectance distribution function for metallic materials
Kai Wang(王凯), Jing-Ping Zhu(朱京平), Hong Liu(刘宏), Xun Hou(侯洵). Chin. Phys. B, 2016, 25(9): 094201.
[9] Size effect in the melting and freezing behaviors of Al/Ti core-shell nanoparticles using molecular dynamics simulations
Jin-Ping Zhang(张金平), Yang-Yang Zhang(张洋洋), Er-Ping Wang(王二萍), Cui-Ming Tang (唐翠明), Xin-Lu Cheng(程新路), Qiu-Hui Zhang(张秋慧). Chin. Phys. B, 2016, 25(3): 036102.
[10] Short-pulse high-power microwave breakdown at high pressures
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Feng Ju (冯菊). Chin. Phys. B, 2015, 24(2): 025101.
[11] Validity of the two-term Boltzmann approximation employed in the fluid model for high-power microwave breakdown in gas
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Yang Dan (杨丹), Zhong Xuan-Ming (钟选明). Chin. Phys. B, 2014, 23(5): 055101.
[12] Bidirectional reflectance distribution function modeling of one-dimensional rough surface in the microwave band
Guo Li-Xin (郭立新), Gou Xue-Yin (苟雪银), Zhang Lian-Bo (张连波). Chin. Phys. B, 2014, 23(11): 114102.
[13] Analysis of electron energy distribution function in a magnetically filtered complex plasma
M K Deka, H Bailung, N C Adhikary. Chin. Phys. B, 2013, 22(4): 045201.
[14] Effect on Landau damping rates for non-Maxwellian distribution function consisting of two electron populations
M. N. S. Qureshi, S. Sehar, H. A. Shah, J. B. Cao. Chin. Phys. B, 2013, 22(3): 035201.
[15] Nonlinear Landau damping of high frequency waves in non-Maxwellian plasmas
M. N. S. Qureshi, Sumbul Sehar, J. K. Shi, H. A. Shah. Chin. Phys. B, 2013, 22(11): 115201.
No Suggested Reading articles found!