Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1999, Vol. 8(11): 831-837    DOI: 10.1088/1004-423X/8/11/006
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

MODELING AND SCALING OF CHIELECTRIC RELAXATION OF NONLINEAR OPTICAL POLYMERS IN FREQUENCY DOMAIN

SHI WEI (史伟), FANG CHANG-SHUI (房昌水), PAN QI-WEI (潘奇伟), SUN XUN (孙洵), GU QING-TIAN (顾庆天), XU DONG (许东)
State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  chielectric relaxation theory was demonstrated, chielectric relaxation that selectively probes chromophore reorientation in the frequency domain was described by the Havriliak Negami(HN) function, chielectric spectra of several nonlinear optical (NLO) polymers were fitted well by the HN function. To describe the scaling of chromophore reorientation relaxation in frequency domain, two-shape parameters m and n describing the low- and high- frequency wings of the chielectric spectra need to be specified, besides the chielectric characteristic relaxation time τ and the chielectric strength $\Delta \chi$(2). From the temperature dependences of m and n of NLO polymers, the relations between the chromophore relaxation and the $\alpha$ relaxation of the polymer host have been revealed.
Received:  02 January 1999      Revised:  07 March 1999      Accepted manuscript online: 
PACS:  42.70.Jk (Polymers and organics)  
  42.65.An (Optical susceptibility, hyperpolarizability)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Supported by the National Natural Science Foundation of China(69990540).

Cite this article: 

SHI WEI (史伟), FANG CHANG-SHUI (房昌水), PAN QI-WEI (潘奇伟), SUN XUN (孙洵), GU QING-TIAN (顾庆天), XU DONG (许东) MODELING AND SCALING OF CHIELECTRIC RELAXATION OF NONLINEAR OPTICAL POLYMERS IN FREQUENCY DOMAIN 1999 Acta Physica Sinica (Overseas Edition) 8 831

[1] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[2] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[3] Polymer/silica hybrid waveguide Y-branch power splitter with loss compensation based on NaYF4: Er3+, Yb3+ nanocrystals
Yue-Wu Fu(符越吾), Tong-He Sun(孙潼鹤), Mei-Ling Zhang(张美玲), Xu-Cheng Zhang(张绪成), Fei Wang(王菲), Da-Ming Zhang(张大明). Chin. Phys. B, 2019, 28(10): 104206.
[4] Influences on oxidation voltage and holding time on poly(3-methylthiophene) film for electrochromic stability
Bo Zhang(张波), Chen Xu(徐晨), Guo-Yue Xu(徐国跃), Chu-Yang Liu(刘初阳), Hong-Han Bu(卜红寒), Jian-Chao Zhang(张建超). Chin. Phys. B, 2018, 27(12): 127802.
[5] Polymer waveguide thermo-optical switch with loss compensation based on NaYF4: 18% Yb3+, 2% Er3+ nanocrystals
Gui-Chao Xing(邢桂超), Mei-Ling Zhang(张美玲), Tong-He Sun(孙潼鹤), Yue-Wu Fu(符越吾), Ya-Li Huang(黄雅莉), Jian Shao(邵健), Jing-Rong Liu(刘静蓉), Fei Wang(王菲), Da-Ming Zhang(张大明). Chin. Phys. B, 2018, 27(11): 114218.
[6] All polymer asymmetric Mach-Zehnder interferometer waveguide sensor by imprinting bonding and laser polishing
Yu Liu(刘豫), Yue Sun(孙月), Yun-Ji Yi(衣云骥), Liang Tian(田亮), Yue Cao(曹悦), Chang-Ming Chen(陈长鸣), Xiao-Qiang Sun(孙小强), Da-Ming Zhang(张大明). Chin. Phys. B, 2017, 26(12): 124215.
[7] Optical nonlinearities of tetracarbonyl-chromium triphenyl phosphine complex
M D Zidan, A W Allaf, A Allahham, A AL-Zier. Chin. Phys. B, 2017, 26(4): 044205.
[8] Holographic storage of three-dimensional image and data using photopolymer and polymer dispersed liquid crystal films
Hong-Yue Gao(高洪跃), Pan Liu(刘攀), Chao Zeng(曾超), Qiu-Xiang Yao(姚秋香), Zhiqiang Zheng(郑志强), Jicheng Liu(刘吉成), Huadong Zheng(郑华东), Ying-Jie Yu(于瀛洁), Zhen-Xiang Zeng(曾震湘), Tao Sun(孙涛). Chin. Phys. B, 2016, 25(9): 094205.
[9] Flexible impedance and capacitive tensile load Sensor based on CNT composite
Zubair Ahmad, Kh S Karimov, Farid Touati. Chin. Phys. B, 2016, 25(2): 028801.
[10] Confinement-induced nanocrystal alignment of conjugated polymer by the soft-stamped nanoimprint lithography
Li Xiao-Hui (李晓慧), Yu Ji-Cheng (俞计成), Lu Nai-Yan (陆乃彦), Zhang Wei-Dong (张卫东), Weng Yu-Yan (翁雨燕), Gu Zhen (顾臻). Chin. Phys. B, 2015, 24(10): 104215.
[11] New method for fast morphological characterization of organic polycrystalline films by polarized optical microscopy
He Xiao-Chuan (何小川), Yang Jian-Bing (杨建兵), Yan Dong-Hang (闫东航), Weng Yu-Xiang (翁羽翔). Chin. Phys. B, 2015, 24(7): 076803.
[12] Novel pressure and displacement sensors based on carbon nanotubes
Kh. S. Karimov, Khaulah Sulaiman, Zubair Ahmad, Khakim M. Akhmedov, A. Mateen. Chin. Phys. B, 2015, 24(1): 018801.
[13] A simple encapsulation method for organic optoelectronic devices
Sun Qian-Qian (孙倩倩), An Qiao-Shi (安桥石), Zhang Fu-Jun (张福俊). Chin. Phys. B, 2014, 23(8): 083302.
[14] Influence of limestone fillers on combustion characteristics of asphalt mortar for pavements
Wu Ke (吴珂), Zhu Kai (朱凯), Wu Hao (吴昊), Han Jun (韩君), Wang Jin-Chang (王金昌), Huang Zhi-Yi (黄志义), Liang Pei (梁培). Chin. Phys. B, 2014, 23(7): 074703.
[15] MEH-PPV/Alq3-based bulk heterojunction photodetector
Zubair Ahmad, Mahdi Hasan Suhail, Issam Ibrahim Muhammad, Wissam Khayer Al-Rawi, Khaulah Sulaiman, Qayyum Zafar, Ahmad Sazali Hamzah, Zurina Shaameri. Chin. Phys. B, 2013, 22(10): 100701.
No Suggested Reading articles found!