Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1993, Vol. 2(7): 508-515    DOI: 10.1088/1004-423X/2/7/004
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

PRODUCTION OF POLARIZED 7Li ATOMIC BEAM IN STRONG MAGNETIC FIELD BY OPTICAL PUMPING

MEI GANG-HUA (梅刚华), HUANG GUI-LONG (黄贵龙), WANG JIA-MIN (王嘉珉), YANG DE-LIN (杨德林), ZHANG YUAN (张原), ZHU XI-WEN (朱熙文)
Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics, Academia Sinica, Wuhan 430071, China
Abstract  The production of a polarized 7Li atomic beam in a strong magnetic field was experimentally studied by laser optical pumping of a single ground hyperfine F level. It was shown that nearly complete negative and partial positive polarizations of 7Li atoms could be realized under appropriate conditions by this pumping scheme, which was in agreement with the rate equation calculations. Based on the analyses of transition probabilities, the maximum polarizations for various transitions and light polarizations were given.
Received:  24 March 1992      Revised:  28 September 1992      Accepted manuscript online: 
PACS:  32.80.Xx (Level crossing and optical pumping)  
  32.10.Fn (Fine and hyperfine structure)  
  32.10.Dk (Electric and magnetic moments, polarizabilities)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
Fund: Project supported by the National Natural Science Foundation of China.

Cite this article: 

MEI GANG-HUA (梅刚华), HUANG GUI-LONG (黄贵龙), WANG JIA-MIN (王嘉珉), YANG DE-LIN (杨德林), ZHANG YUAN (张原), ZHU XI-WEN (朱熙文) PRODUCTION OF POLARIZED 7Li ATOMIC BEAM IN STRONG MAGNETIC FIELD BY OPTICAL PUMPING 1993 Acta Physica Sinica (Overseas Edition) 2 508

[1] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[2] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[3] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[4] An effective pumping method for increasing atomic utilization in a compact cold atom clock
Xin-Chuan Ouyang(欧阳鑫川), Bo-Wen Yang(杨博文), Jian-Liao Deng(邓见辽), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hang-Hang Qi(亓航航), Qing-Qing Hu(胡青青), and Hua-Dong Cheng(成华东). Chin. Phys. B, 2021, 30(8): 083202.
[5] Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(5): 050602.
[6] Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving
Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(4): 044214.
[7] Polarization and fundamental sensitivity of 39K (133Cs)-85Rb-21Neco-magnetometers
Jian-Hua Liu(刘建华), Dong-Yang Jing(靖东洋), Lin Zhuang(庄琳), Wei Quan(全伟), Jiancheng Fang(房建成), Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(4): 043206.
[8] Spin-exchange relaxation of naturally abundant Rb in a K-Rb-21Ne self-compensated atomic comagnetometer
Yan Lu(卢妍), Yueyang Zhai(翟跃阳), Yong Zhang(张勇), Wenfeng Fan(范文峰), Li Xing(邢力), Wei Quan(全伟). Chin. Phys. B, 2020, 29(4): 043204.
[9] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
[10] Laser frequency offset-locking using electromagnetically induced transparency spectroscopy of 85Rb in magnetic field
Han-Mu Wang(王汉睦), Hong Cheng(成红), Shan-Shan Zhang(张珊珊), Pei-Pei Xin(辛培培), Zi-Shan Xu(徐子珊), Hong-Ping Liu(刘红平). Chin. Phys. B, 2018, 27(9): 094205.
[11] Transverse relaxation determination based on light polarization modulation for spin-exchange relaxation free atomic magnetometer
Xue-Jing Liu(刘学静), Ming Ding(丁铭), Yang Li(李阳), Yan-Hui Hu(胡焱晖), Wei Jin(靳伟), Jian-Cheng Fang(房建成). Chin. Phys. B, 2018, 27(7): 073201.
[12] Demonstration of superadiabatic population transfer in superconducting qubit
Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 063202.
[13] Retraction: Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(11): 113301.
[14] Indirect pumping bell-bloom magnetometer
Meng-Bing Wang(王梦冰), Da-Fa Zhao(赵大法), Gui-Ying Zhang(张桂迎), Kai-Feng Zhao(赵凯锋). Chin. Phys. B, 2017, 26(10): 100701.
[15] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
No Suggested Reading articles found!