Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1993, Vol. 2(12): 890-897    DOI: 10.1088/1004-423X/2/12/002
GENERAL Prev   Next  

A RECURRENT FORMULA FOR $\alpha$-ROW PARTITION AND THE CALCULATIONS OF THE MULTIPLICITIES OF COUPLING STATES IN SHELL-MODEL

CHEN JIAN-HUA (陈健华), CHENG XIANG-AI (程香爱), GAO YI-DONG (高一东)
Department of Applied Physics, National University oF Defense and Technology, Changsha 410073, China
Abstract  In this paper, a recurrent formula for $\alpha$-row partition is given. Using this formula, we get the multiplicities of all sorts of coupling states in shell-model. It has been proved to be very efficient in simplifying the ealculations concerned.
Received:  18 September 1992      Accepted manuscript online: 
PACS:  05.30.Fk (Fermion systems and electron gas)  
  21.60.Cs (Shell model)  

Cite this article: 

CHEN JIAN-HUA (陈健华), CHENG XIANG-AI (程香爱), GAO YI-DONG (高一东) A RECURRENT FORMULA FOR $\alpha$-ROW PARTITION AND THE CALCULATIONS OF THE MULTIPLICITIES OF COUPLING STATES IN SHELL-MODEL 1993 Acta Physica Sinica (Overseas Edition) 2 890

[1] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[2] Non-universal Fermi polaron in quasi two-dimensional quantum gases
Yue-Ran Shi(石悦然), Jin-Ge Chen(陈金鸽), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2022, 31(8): 080305.
[3] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[4] Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2021, 30(10): 100305.
[5] Polaron and molecular states of a spin-orbit coupled impurity in a spinless Fermi sea
Hong-Hao Yin(尹洪浩), Tian-Yang Xie(谢天扬), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(10): 106702.
[6] Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle
Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺). Chin. Phys. B, 2021, 30(7): 070302.
[7] Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection
Jing-Min Hou(侯净敏). Chin. Phys. B, 2020, 29(12): 120305.
[8] Impurity-induced Shiba bound state in the BCS-BEC crossover regime of two-dimensional Fermi superfluid
Siqi Shao(邵思齐), Kezhao Zhou(周可召), Zhidong Zhang(张志东). Chin. Phys. B, 2019, 28(7): 070501.
[9] Effect of disorders on topological phases inone-dimensional optical superlattices
Zhizhou Wang(王志宙), Yidong Wu(吴一东), Huijing Du(杜会静), Xili Jing(井西利). Chin. Phys. B, 2016, 25(7): 077303.
[10] Phase diagram of the Fermi–Hubbard model with spin-dependent external potentials: A DMRG study
Wei Xing-Bo (魏兴波), Meng Ye-Ming (孟烨铭), Wu Zhe-Ming (吴哲明), Gao Xian-Long (高先龙). Chin. Phys. B, 2015, 24(11): 117101.
[11] Three-dimensional spin–orbit coupled Fermi gases: Fulde–Ferrell pairing, Majorana fermions, Weyl fermions, and gapless topological superfluidity
Xia-Ji Liu, Hui Hu, Han Pu. Chin. Phys. B, 2015, 24(5): 050502.
[12] Topological phase transitions driven by next-nearest-neighbor hopping in noncentrosymmetric cold Fermi gases
Wang Rui (王瑞), Zhang Cun-Xi (张存喜), Ji Qing-Shan (计青山). Chin. Phys. B, 2015, 24(3): 030305.
[13] Condensate fraction of asymmetric three-component Fermi gas
Du Jia-Jia (杜佳佳), Liang Jun-Jun (梁军军), Liang Jiu-Qing (梁九卿). Chin. Phys. B, 2014, 23(2): 020308.
[14] Dispersion relation of excitation mode in spin-polarized Fermi gas
Liu Ke(刘可) and Chen Ji-Sheng(陈继胜) . Chin. Phys. B, 2012, 21(3): 030309.
[15] Oscillating Casimir force between two slabs in a Fermi sea
Chen Li-Wei(陈礼炜), Su Guo-Zhen(苏国珍), Chen Jin-Can(陈金灿), and Andresen Bjarne . Chin. Phys. B, 2012, 21(1): 010501.
No Suggested Reading articles found!