Content of TOPICAL REVIEW—Quantum computation and quantum simulation in our journal

        Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For selected: Toggle thumbnails
    Quantum computation and simulation with superconducting qubits
    Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜)
    Chin. Phys. B, 2021, 30 (8): 080304.   DOI: 10.1088/1674-1056/ac16cf
    Abstract739)   HTML11)    PDF (3866KB)(418)      
    Superconducting circuits based on Josephson junctions are regarded as one of the most promising technologies for the implementation of scalable quantum computers. This review presents the basic principles of superconducting qubits and shows the progress of quantum computing and quantum simulation based on superconducting qubits in recent years. The experimental realization of gate operations, readout, error correction codes, as well as some quantum algorithms are summarized, followed by an introduction of quantum simulation. And then some important applications in fields including condensed matter physics, quantum annealing, and quantum chemistry are discussed.
    Quantum computation and simulation with vibrational modes of trapped ions
    Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂)
    Chin. Phys. B, 2021, 30 (6): 060311.   DOI: 10.1088/1674-1056/ac01e3
    Abstract839)   HTML7)    PDF (5874KB)(375)      
    Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource, beyond the role as a mediator for entangling quantum operations on internal degrees of freedom, because of the large available Hilbert space. The vibrational modes can be represented as quantum harmonic oscillators and thus offer a Hilbert space with infinite dimensions. Here we review recent theoretical and experimental progress in the coherent manipulation of the vibrational modes, including bosonic encoding schemes in quantum information, reliable and efficient measurement techniques, and quantum operations that allow various quantum simulations and quantum computation algorithms. We describe experiments using the vibrational modes, including the preparation of non-classical states, molecular vibronic sampling, and applications in quantum thermodynamics. We finally discuss the potential prospects and challenges of trapped-ion vibrational-mode quantum information processing.
    Quantum computation and error correction based on continuous variable cluster states
    Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀)
    Chin. Phys. B, 2021, 30 (6): 060312.   DOI: 10.1088/1674-1056/abeb0a
    Abstract511)   HTML4)    PDF (1213KB)(376)      
    Measurement-based quantum computation with continuous variables, which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state, provides a feasible way to implement quantum computation. Quantum error correction is an essential procedure to protect quantum information in quantum computation and quantum communication. In this review, we briefly introduce the progress of measurement-based quantum computation and quantum error correction with continuous variables based on Gaussian cluster states. We also discuss the challenges in the fault-tolerant measurement-based quantum computation with continuous variables.
    Quantum simulations with nuclear magnetic resonance system
    Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为)
    Chin. Phys. B, 2021, 30 (4): 048201.   DOI: 10.1088/1674-1056/abe299
    Abstract450)   HTML2)    PDF (2301KB)(192)      
    Thanks to the quantum simulation, more and more problems in quantum mechanics which were previously inaccessible are now open to us. Capitalizing on the state-of-the-art techniques on quantum coherent control developed in past few decades, e.g., the high-precision quantum gate manipulating, the time-reversal harnessing, the high-fidelity state preparation and tomography, the nuclear magnetic resonance (NMR) system offers a unique platform for quantum simulation of many-body physics and high-energy physics. Here, we review the recent experimental progress and discuss the prospects for quantum simulation realized on NMR systems.
    A concise review of Rydberg atom based quantum computation and quantum simulation
    Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力)
    Chin. Phys. B, 2021, 30 (2): 020305.   DOI: 10.1088/1674-1056/abd76f
    Abstract1873)   HTML45)    PDF (3178KB)(1391)      
    Quantum information processing based on Rydberg atoms emerged as a promising direction two decades ago. Recent experimental and theoretical progresses have shined exciting light on this avenue. In this concise review, we will briefly introduce the basics of Rydberg atoms and their recent applications in associated areas of neutral atom quantum computation and simulation. We shall also include related discussions on quantum optics with Rydberg atomic ensembles, which are increasingly used to explore quantum computation and quantum simulation with photons.
    Selected topics of quantum computing for nuclear physics
    Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮)
    Chin. Phys. B, 2021, 30 (2): 020306.   DOI: 10.1088/1674-1056/abd761
    Abstract559)   HTML7)    PDF (915KB)(354)      
    Nuclear physics, whose underling theory is described by quantum gauge field coupled with matter, is fundamentally important and yet is formidably challenge for simulation with classical computers. Quantum computing provides a perhaps transformative approach for studying and understanding nuclear physics. With rapid scaling-up of quantum processors as well as advances on quantum algorithms, the digital quantum simulation approach for simulating quantum gauge fields and nuclear physics has gained lots of attention. In this review, we aim to summarize recent efforts on solving nuclear physics with quantum computers. We first discuss a formulation of nuclear physics in the language of quantum computing. In particular, we review how quantum gauge fields (both Abelian and non-Abelian) and their coupling to matter field can be mapped and studied on a quantum computer. We then introduce related quantum algorithms for solving static properties and real-time evolution for quantum systems, and show their applications for a broad range of problems in nuclear physics, including simulation of lattice gauge field, solving nucleon and nuclear structures, quantum advantage for simulating scattering in quantum field theory, non-equilibrium dynamics, and so on. Finally, a short outlook on future work is given.
    Review of quantum simulation based on Rydberg many-body system
    Zheng-Yuan Zhang(张正源), Dong-Sheng Ding(丁冬生), and Bao-Sen Shi(史保森)
    Chin. Phys. B, 2021, 30 (2): 020307.   DOI: 10.1088/1674-1056/abd744
    Abstract539)   HTML8)    PDF (3357KB)(417)      
    Quantum simulation has been developed extensively over the past decades, widely applied to different models to explore dynamics in the quantum regime. Rydberg atoms have strong dipole-dipole interactions and interact with each other over a long distance, which makes it straightforward to build many-body interacting quantum systems to simulate specific models. Additionally, neutral atoms are easily manipulated due to their weak interactions. These advantages make Rydberg many-body system an ideal platform to implement quantum simulations. This paper reviews several quantum simulations for different models based on Rydberg many-body systems, including quantum Ising models in one dimension and two dimensions mainly for quantum magnetism, XY model for excitation transport, SSH model for symmetry-protected topological phases, and critical self-organized behaviors in many-body systems. Besides, some challenges and promising directions of quantum simulations based on Rydberg many-body system are discussed in this paper.
    Low-temperature environments for quantum computation and quantum simulation
    Hailong Fu(付海龙), Pengjie Wang(王鹏捷), Zhenhai Hu(胡禛海), Yifan Li(李亦璠), and Xi Lin(林熙)
    Chin. Phys. B, 2021, 30 (2): 020702.   DOI: 10.1088/1674-1056/abd762
    Abstract764)   HTML16)    PDF (957KB)(390)      
    This review summarizes the requirement of low temperature conditions in existing experimental approaches to quantum computation and quantum simulation.
ISSN 1674-1056   CN 11-5639/O4

Current issue

, Vol. 33, No. 4

Previous issues

1992 - present