Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 030303    DOI: 10.1088/1674-1056/ab695d
GENERAL Prev   Next  

Reference-frame-independent quantum key distribution with an untrusted source

Jia-Ji Li(李家骥)1,2, Yang Wang(汪洋)1,2, Hong-Wei Li(李宏伟)1,2, Wan-Su Bao(鲍皖苏)1,2
1 Henan Key Laboratory of Quantum Information and Cryptography, SSF IEU, Zhengzhou 450001, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Reference frame independent quantum key distribution (RFI-QKD) allows two legitimate parties to share the common secret keys with the drift of reference frames. In order to reduce the actual requirements of RFI-QKD protocol on light source and make it more suitable for practical applications, this paper gives a specific description of RFI-QKD protocol with an untrusted source and analyzes the practical security of this protocol based on the two-way “plug and play” structure commonly used in practical systems. In addition, we also investigate the performance of RFI-QKD with an untrusted source considering statistical fluctuations based on Chernoff bound. Using simulations, we compare the secret key rate of RFI-QKD with an untrusted source to RFI-QKD with trusted source. The results show that the performance of RFI-QKD with an untrusted source is similar to that of RFI-QKD with trusted source, and the finite data size clearly effects the performance of our protocol.
Keywords:  quantum key distribution      reference frame independent      finite key      untrusted source  
Received:  11 October 2019      Revised:  23 December 2019      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 61505261, 61675235, 61605248, and 11304397).
Corresponding Authors:  Wan-Su Bao     E-mail:  bws@qiclab.cn

Cite this article: 

Jia-Ji Li(李家骥), Yang Wang(汪洋), Hong-Wei Li(李宏伟), Wan-Su Bao(鲍皖苏) Reference-frame-independent quantum key distribution with an untrusted source 2020 Chin. Phys. B 29 030303

[1] Bennett C H and Brassard G 1984 Proceddings of the IEEE International Conference on Computers, Systems and Signal Processing, 1999 Bangalore, India (IEEE, New York, 1984) p. 175
[2] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[3] Lo H K, Curty M and Tamaki K 2014 Nat. Photon. 8 595
[4] Guo Y, Su Y, Zhou J, Zhang L and Huang D 2019 Chin. Phys. B 28 010305
[5] Tang G Z, Sun S H, Chen H, Li C Y and Liang L M 2016 Chin. Phys. Lett. 33 120301
[6] Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C and Han Z F 2016 Phys. Rev. X 9 021046
[7] Cui C H, Yin Z Q, Wang R, Chen W, Wang S, Guo G C and Han Z F 2019 Phys. Rev. Appl. 11 034053
[8] Qian Y J, He D Y, Wang S, Chen W, Yin Z Q, Guo G C and Han Z F 2019 Optica 6 1178
[9] Wang S, Chen W, Yin Z Q et al. 2018 Opt. Lett. 43 2030
[10] Wang S, Yin Z Q, Chau H F, Chen W, Wang C, Guo G C and Han Z F 2018 Quantum Sci. Technol. 3 025006
[11] Yin Z Q, Wang S, Chen W, Han Y G, Wang R, Guo G C and Han Z F 2018 Nat Commun. 9 457
[12] Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat Photon. 9 832
[13] Wang S, Chen W, Yin Z Q et al. 2014 Opt. Express 22 21739
[14] Wang S, Chen W, Guo F J, Yin Z Q, Li H W, Zhou Z, Guo G C and Han Z F 2012 Opt. Lett. 37 1008-1010
[15] Rarity J G, Tapster P R, Gorman P M and Knight P 2002 New J. Phys. 4 82
[16] Bonato C, Tomaello A, Deppo V D, Naletto G and Villoresi P 2009 New J. Phys. 11 045017
[17] Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822
[18] Chen K and Lo H K url = 2007 Quantum Inf. Comput. 7 689
[19] Bacco D, Ding Y, Dalgaard K, Rottwitt K and Leif K O 2017 Sci. Rep. 7 1
[20] Sibson P, Erven C, Godfrey M, Miki S, Yamashita T and Fujiwara M 2017 Nat. Commun. 8 13984
[21] Laing A, Scarani V, Rarity J G and O'Brien J L 2010 Phys. Rev. A 82 012304
[22] Xue Q and Jiao R 2019 Quantum Inf. Process. 18 313
[23] Li Y P, Chen W, Wang F X, Yin Z Q, Zhang L, Liu H and Han Z F 2019 Opt. Lett. 44 4523
[24] Li X, Mao C, Zhu J, Zhang C and Wang Q 2019 Eur. Phys. J. D 73 86
[25] Zhang H, Zhang C H, Zhang C M, Guo G C and Wang Q 2019 J. Opt. Soc. Am. B 36 959
[26] Zhang C M, Wang W B, Li H W and Wang Q 2019 Opt. Lett. 44 1226
[27] Yin Z Q, Wang S, Chen W, Li H W, Guo G C and Han Z F 2014 Quantum Inf. Process. 13 1237
[28] Zhang C M, Zhu J R and Wang Q 2017 Phys. Rev. A. 95 032309
[29] Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C and Han Z F 2015 Phys. Rev. Lett. 115 160502
[30] Wang C, Yin Z Q, Wang S, Chen W, Guo G C and Han Z F 2017 Optica 4 1016
[31] Liang W Y, Wang S, Li H W, Yin Z Q, Chen W, Yao Y, Huang Z J, Guo G C and Han Z F 2015 Sci. Rep. 4 3617
[32] Stucki D, Gisin N, Guinnard O, Robordy G and Zbinden H 2002 New J. Phys. 4 41
[33] Gisin N, Fasel S, Kraus B, Zbinden H and Ribordy G 2006 Phys. Rev. A 73 022320
[34] Zhao Y, Qi B and Lo H K 2008 Phys. Rev. A 77 052327
[35] Zhao Y, Qi B, Lo H K and Qian L 2010 New J. Phys. 12 023024
[36] Tanumoy P, Byung K P, Cho Y W et al. 2017 arXiv:1701.07587v1 [quant-ph]
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[13] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!