Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 027101    DOI: 10.1088/1674-1056/ab5fc5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Molecular dynamics simulation of atomic hydrogen diffusion in strained amorphous silica

Fu-Jie Zhang(张福杰)1, Bao-Hua Zhou(周保花)1, Xiao Liu(刘笑)1, Yu Song(宋宇)2,3, Xu Zuo(左旭)1,4
1 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China;
2 Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China;
3 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China;
4 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China
Abstract  Understanding hydrogen diffusion in amorphous SiO2 (a-SiO2), especially under strain, is of prominent importance for improving the reliability of semiconducting devices, such as metal-oxide-semiconductor field effect transistors. In this work, the diffusion of hydrogen atom in a-SiO2 under strain is simulated by using molecular dynamics (MD) with the ReaxFF force field. A defect-free a-SiO2 atomic model, of which the local structure parameters accord well with the experimental results, is established. Strain is applied by using the uniaxial tensile method, and the values of maximum strain, ultimate strength, and Young's modulus of the a-SiO2 model under different tensile rates are calculated. The diffusion of hydrogen atom is simulated by MD with the ReaxFF, and its pathway is identified to be a series of hops among local energy minima. Moreover, the calculated diffusivity and activation energy show their dependence on strain. The diffusivity is substantially enhanced by the tensile strain at a low temperature (below 500 K), but reduced at a high temperature (above 500 K). The activation energy decreases as strain increases. Our research shows that the tensile strain can have an influence on hydrogen transportation in a-SiO2, which may be utilized to improve the reliability of semiconducting devices.
Keywords:  molecular dynamics      tensile strain      amorphous SiO2      hydrogen diffusion  
Received:  04 November 2019      Revised:  04 December 2019      Accepted manuscript online: 
PACS:  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  66.30.-h (Diffusion in solids)  
  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
Fund: Project supported by the Science Challenge Project, China (Grant No. TZ2016003-1-105) and the CAEP Microsystem and THz Science and Technology Foundation, China (Grant No. CAEPMT201501).
Corresponding Authors:  Xu Zuo     E-mail:  xzuo@nankai.edu.cn

Cite this article: 

Fu-Jie Zhang(张福杰), Bao-Hua Zhou(周保花), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭) Molecular dynamics simulation of atomic hydrogen diffusion in strained amorphous silica 2020 Chin. Phys. B 29 027101

[1] Sheikholeslam S A, Manzano H, Grecu C and Ivanov A 2018 Superlattices Microstruct. 120 561
[2] Pantelides S T, Rashkeev S N, Buczko R, Fleetwood D M and Schrimpf R D 2000 IEEE Trans. Nucl. Sci. 47 2262
[3] Witczak S C, Suehle J S and Gaitan M 1992 Solid State Electron. 35 345
[4] Vanheusden K and Devine R A B 2000 Appl. Phys. Lett. 76 3109
[5] Afanas'ev V V, Adriaenssens G J and Stesmans A 2001 Microelectron. Eng. 59 85
[6] Sheikholeslam S A, Manzano H, Grecu C and Ivanov A 2016 J. Mater. Chem. C 4 8104
[7] Alam M A 2003 IEEE Int. Electron Devices Meet., December 8-10, 2003, Washington DC USA p. 14.4.1
[8] Krishnan A T, Chancellor C, Chakravarthi S, Nicollian P E, Reddy V, Varghese A, Khamankar R B, Krishnan S 2005 IEEE Int. Electron Devices Meet. Tech. Dig., December 5, 2005, Washington, DC, USA, p. 688
[9] KflogluKufluoglu H and Alam M A 2007 IEEE Trans. Electron. Dev. 54 1101
[10] Tuttle B 2000 Phys. Rev. B 61 4417
[11] Devine R A B and Herrera G V 2001 Phys. Rev. B 63 233406
[12] Godet J and Pasquarello A 2006 Phys. Rev. Lett. 97 155901
[13] Godet J and Pasquarello A 2005 Microelectron. Eng. 80 288
[14] Griscom D L 1985 J. Appl. Phys. 58 2524
[15] Yue Y, Wang J, Zhang Y, Song Y and Zuo X 2018 Physica B 533 5
[16] Xiong K, Robertson J and Clark S J 2007 J. Appl. Phys. 102 083710
[17] Plimpton S 1995 J. Comput. Phys. 117 1
[18] Duan F L, Zhang C and Liu Q S 2015 J. Nano Res. 30 59
[19] Petousis I, Mrdjenovich D, Ballouz E, Liu M, Winston D, Chen W, Graf T, Schladt T D, Persson K A and Prinz F B 2017 Sci. Data 4 160134
[20] Mathew K, Zheng C, Winston D, Chen C, Dozier A, Rehr J J, Ong S P and Persson K A 2018 Sci. Data 5 180151
[21] Ebrahem F, Bamer F and Markert B 2018 Comput. Mater. Sci. 149 162
[22] Smedskjaer M M, Bauchy M, Mauro J C, Rzoska S J and Bockowski M 2015 J. Chem. Phys. 143 164505
[23] Wang B, Yu Y, Wang M, Mauro J C and Bauchy M 2016 Phys. Rev. B 93 064202
[24] Yu Y, Krishnan N M A, Smedskjaer M M, Sant G and Bauchy M 2018 J. Chem. Phys. 148 074503
[25] Chowdhury S C, Haque B Z and Gillespie J W 2016 J. Mater. Sci. 51 10139
[26] Kresse G 2007 http://cms.mpi.univie.ac.at/vasp/
[27] Wood S M, Eames C, Kendrick E and Islam M S 2015 J. Phys. Chem. C 119 15935
[28] van Duin A C, Merinov B V, Han S S, Dorso C O and Goddard W A, 3rd 2008 J. Phys. Chem. A 112 11414
[29] Sheikholeslam S A, Luo W, Grecu C, Xia G and Ivanov A 2016 J. Non Cryst. Solids 440 7
[30] Bauer T, Lunkenheimer P and Loidl A 2013 Phys. Rev. Lett. 111 225702
[31] Sundararaman S, Ching W Y and Huang L 2016 J. Non Cryst. Solids 445-446 102
[32] Lane J M 2015 Phys. Rev. E 92 012320
[33] Vollmayr K, Kob W and Binder K 1996 Phys. Rev. B 54 15808
[34] Mozzi R L and Warren B E 1969 J. Appl. Crystallogr. 2 164
[35] Fogarty J C, Aktulga H M, Grama A Y, van Duin A C and Pandit S A 2010 J. Chem. Phys. 132 174704
[36] El-Sayed A M, Watkins M B, Afanas'ev V V and Shluger A L 2014 Phys. Rev. B 89 125201
[37] Da Silva J R G, Pinatti D G, Anderson C E and Rudee M L 1975 Philos. Mag. 31 713
[38] Zhang Y, Huang L and Shi Y 2019 Nano Lett. 19 5222
[39] Yuan F and Huang L 2012 J. Non Cryst. Solids 358 3481
[40] Muralidharan K, Oh K D, Deymier P A, Runge K and Simmons J H 2007 J. Mater. Sci. 42 4159
[41] Gupta P K and Kurkjian C R 2005 J. Non Cryst. Solids 351 2324
[42] Muralidharan K, Simmons J H, Deymier P A and Runge K 2005 J. Non Cryst. Solids 351 1532
[43] Pedone A, Malavasi G, Menziani M C, Segre U and Cormack A N 2008 Chem. Mater. 20 4356
[44] Beyer W and Wagner H 1982 J. Appl. Phys. 53 8745
[45] Fink D, Krauser J, Nagengast D, Murphy T A, Erxmeier J, Palmetshofer L, Bräunig D and Weidinger A 1995 Appl. Phys. A 61 381
[46] Verdi L and Miotello A 1993 Phys. Rev. B 47 14187
[47] Cartier E, Buchanan D A, Stathis J H and DiMaria D J 1995 J. Non Cryst. Solids 187 244
[48] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[49] Yue Y, Song Y and Zuo X 2018 Chin. Phys. B 27 037102
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!