CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Molecular dynamics simulation of atomic hydrogen diffusion in strained amorphous silica |
Fu-Jie Zhang(张福杰)1, Bao-Hua Zhou(周保花)1, Xiao Liu(刘笑)1, Yu Song(宋宇)2,3, Xu Zuo(左旭)1,4 |
1 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China; 2 Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China; 3 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China; 4 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China |
|
|
Abstract Understanding hydrogen diffusion in amorphous SiO2 (a-SiO2), especially under strain, is of prominent importance for improving the reliability of semiconducting devices, such as metal-oxide-semiconductor field effect transistors. In this work, the diffusion of hydrogen atom in a-SiO2 under strain is simulated by using molecular dynamics (MD) with the ReaxFF force field. A defect-free a-SiO2 atomic model, of which the local structure parameters accord well with the experimental results, is established. Strain is applied by using the uniaxial tensile method, and the values of maximum strain, ultimate strength, and Young's modulus of the a-SiO2 model under different tensile rates are calculated. The diffusion of hydrogen atom is simulated by MD with the ReaxFF, and its pathway is identified to be a series of hops among local energy minima. Moreover, the calculated diffusivity and activation energy show their dependence on strain. The diffusivity is substantially enhanced by the tensile strain at a low temperature (below 500 K), but reduced at a high temperature (above 500 K). The activation energy decreases as strain increases. Our research shows that the tensile strain can have an influence on hydrogen transportation in a-SiO2, which may be utilized to improve the reliability of semiconducting devices.
|
Received: 04 November 2019
Revised: 04 December 2019
Accepted manuscript online:
|
PACS:
|
71.15.Pd
|
(Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
66.30.-h
|
(Diffusion in solids)
|
|
61.72.Hh
|
(Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))
|
|
Fund: Project supported by the Science Challenge Project, China (Grant No. TZ2016003-1-105) and the CAEP Microsystem and THz Science and Technology Foundation, China (Grant No. CAEPMT201501). |
Corresponding Authors:
Xu Zuo
E-mail: xzuo@nankai.edu.cn
|
Cite this article:
Fu-Jie Zhang(张福杰), Bao-Hua Zhou(周保花), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭) Molecular dynamics simulation of atomic hydrogen diffusion in strained amorphous silica 2020 Chin. Phys. B 29 027101
|
[1] |
Sheikholeslam S A, Manzano H, Grecu C and Ivanov A 2018 Superlattices Microstruct. 120 561
|
[2] |
Pantelides S T, Rashkeev S N, Buczko R, Fleetwood D M and Schrimpf R D 2000 IEEE Trans. Nucl. Sci. 47 2262
|
[3] |
Witczak S C, Suehle J S and Gaitan M 1992 Solid State Electron. 35 345
|
[4] |
Vanheusden K and Devine R A B 2000 Appl. Phys. Lett. 76 3109
|
[5] |
Afanas'ev V V, Adriaenssens G J and Stesmans A 2001 Microelectron. Eng. 59 85
|
[6] |
Sheikholeslam S A, Manzano H, Grecu C and Ivanov A 2016 J. Mater. Chem. C 4 8104
|
[7] |
Alam M A 2003 IEEE Int. Electron Devices Meet., December 8-10, 2003, Washington DC USA p. 14.4.1
|
[8] |
Krishnan A T, Chancellor C, Chakravarthi S, Nicollian P E, Reddy V, Varghese A, Khamankar R B, Krishnan S 2005 IEEE Int. Electron Devices Meet. Tech. Dig., December 5, 2005, Washington, DC, USA, p. 688
|
[9] |
KflogluKufluoglu H and Alam M A 2007 IEEE Trans. Electron. Dev. 54 1101
|
[10] |
Tuttle B 2000 Phys. Rev. B 61 4417
|
[11] |
Devine R A B and Herrera G V 2001 Phys. Rev. B 63 233406
|
[12] |
Godet J and Pasquarello A 2006 Phys. Rev. Lett. 97 155901
|
[13] |
Godet J and Pasquarello A 2005 Microelectron. Eng. 80 288
|
[14] |
Griscom D L 1985 J. Appl. Phys. 58 2524
|
[15] |
Yue Y, Wang J, Zhang Y, Song Y and Zuo X 2018 Physica B 533 5
|
[16] |
Xiong K, Robertson J and Clark S J 2007 J. Appl. Phys. 102 083710
|
[17] |
Plimpton S 1995 J. Comput. Phys. 117 1
|
[18] |
Duan F L, Zhang C and Liu Q S 2015 J. Nano Res. 30 59
|
[19] |
Petousis I, Mrdjenovich D, Ballouz E, Liu M, Winston D, Chen W, Graf T, Schladt T D, Persson K A and Prinz F B 2017 Sci. Data 4 160134
|
[20] |
Mathew K, Zheng C, Winston D, Chen C, Dozier A, Rehr J J, Ong S P and Persson K A 2018 Sci. Data 5 180151
|
[21] |
Ebrahem F, Bamer F and Markert B 2018 Comput. Mater. Sci. 149 162
|
[22] |
Smedskjaer M M, Bauchy M, Mauro J C, Rzoska S J and Bockowski M 2015 J. Chem. Phys. 143 164505
|
[23] |
Wang B, Yu Y, Wang M, Mauro J C and Bauchy M 2016 Phys. Rev. B 93 064202
|
[24] |
Yu Y, Krishnan N M A, Smedskjaer M M, Sant G and Bauchy M 2018 J. Chem. Phys. 148 074503
|
[25] |
Chowdhury S C, Haque B Z and Gillespie J W 2016 J. Mater. Sci. 51 10139
|
[26] |
Kresse G 2007 http://cms.mpi.univie.ac.at/vasp/
|
[27] |
Wood S M, Eames C, Kendrick E and Islam M S 2015 J. Phys. Chem. C 119 15935
|
[28] |
van Duin A C, Merinov B V, Han S S, Dorso C O and Goddard W A, 3rd 2008 J. Phys. Chem. A 112 11414
|
[29] |
Sheikholeslam S A, Luo W, Grecu C, Xia G and Ivanov A 2016 J. Non Cryst. Solids 440 7
|
[30] |
Bauer T, Lunkenheimer P and Loidl A 2013 Phys. Rev. Lett. 111 225702
|
[31] |
Sundararaman S, Ching W Y and Huang L 2016 J. Non Cryst. Solids 445-446 102
|
[32] |
Lane J M 2015 Phys. Rev. E 92 012320
|
[33] |
Vollmayr K, Kob W and Binder K 1996 Phys. Rev. B 54 15808
|
[34] |
Mozzi R L and Warren B E 1969 J. Appl. Crystallogr. 2 164
|
[35] |
Fogarty J C, Aktulga H M, Grama A Y, van Duin A C and Pandit S A 2010 J. Chem. Phys. 132 174704
|
[36] |
El-Sayed A M, Watkins M B, Afanas'ev V V and Shluger A L 2014 Phys. Rev. B 89 125201
|
[37] |
Da Silva J R G, Pinatti D G, Anderson C E and Rudee M L 1975 Philos. Mag. 31 713
|
[38] |
Zhang Y, Huang L and Shi Y 2019 Nano Lett. 19 5222
|
[39] |
Yuan F and Huang L 2012 J. Non Cryst. Solids 358 3481
|
[40] |
Muralidharan K, Oh K D, Deymier P A, Runge K and Simmons J H 2007 J. Mater. Sci. 42 4159
|
[41] |
Gupta P K and Kurkjian C R 2005 J. Non Cryst. Solids 351 2324
|
[42] |
Muralidharan K, Simmons J H, Deymier P A and Runge K 2005 J. Non Cryst. Solids 351 1532
|
[43] |
Pedone A, Malavasi G, Menziani M C, Segre U and Cormack A N 2008 Chem. Mater. 20 4356
|
[44] |
Beyer W and Wagner H 1982 J. Appl. Phys. 53 8745
|
[45] |
Fink D, Krauser J, Nagengast D, Murphy T A, Erxmeier J, Palmetshofer L, Bräunig D and Weidinger A 1995 Appl. Phys. A 61 381
|
[46] |
Verdi L and Miotello A 1993 Phys. Rev. B 47 14187
|
[47] |
Cartier E, Buchanan D A, Stathis J H and DiMaria D J 1995 J. Non Cryst. Solids 187 244
|
[48] |
Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
|
[49] |
Yue Y, Song Y and Zuo X 2018 Chin. Phys. B 27 037102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|