Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 013206    DOI: 10.1088/1674-1056/ab6315
RAPID COMMUNICATION Prev   Next  

Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates

Yu-Jiao Jiang(江昱佼)1,2, Yue-Ying Liang(梁玥瑛)2,3, Yi-Tan Gao(高亦谈)2,3, Kun Zhao(赵昆)2, Si-Yuan Xu(许思源)1,2, Ji Wang(王佶)2,4, Xin-Kui He(贺新奎)2,5, Hao Teng(滕浩)2, Jiang-Feng Zhu(朱江峰)1, Yun-Lin Chen(陈云琳)4, Zhi-Yi Wei(魏志义)2,3,5
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Institute of Applied Micro-Nano Materials, School of Science, Beijing Jiaotong University, Beijing 100044, China;
5 Songshan Lake Material Laboratory, Dongguan 523808, China
Abstract  We utilized a set of fused silica thin plates to broaden the spectrum of 1 kHz, 30 fs Ti:sapphire amplified laser pulses to an octave. Following the compression by chirped mirror pairs, the generated few-cycle pulses were focused onto an argon filled gas cell. We detected high order harmonics corresponding to a train of 209 as pulses, characterized by the reconstruction of attosecond beating by interference of two-photon transition (RABITT) technique. Compared with the conventional attosecond pulse trains, the broad harmonics in such pulse trains cover more energy range, so it is more efficient in studying some typical cases, such as resonances, with frequency resolved RABITT. As the solid thin plates can support high power supercontinuum generation, it is feasible to tailor the spectrum to have different central wavelength and spectral width, which will make the RABITT source work in different applications.
Keywords:  supercontinuum generation      high order harmonic generation      reconstruction of attosecond beating by interference of two-photon transition (RABITT)      attosecond pulse trains  
Received:  15 November 2019      Revised:  14 December 2019      Accepted manuscript online: 
PACS:  32.80.Fb (Photoionization of atoms and ions)  
  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0405202), the Major Program of the National Natural Science Foundation of China (Grant No. 61690221), the Key Program of the National Natural Science Foundation of China (Grant No. 11434016), and the National Natural Science Foundation of China (Grant Nos. 11574384, 11674386, and 11774277).
Corresponding Authors:  Kun Zhao, Zhi-Yi Wei     E-mail:  zhaokun@iphy.ac.cn;zywei@iphy.ac.cn

Cite this article: 

Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义) Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates 2020 Chin. Phys. B 29 013206

[1] Rosker M J, Dantus M and Zewail A H 1988 J. Chem. Phys. 89 6113
[2] Zewail A H 2000 J. Phys. Chem. A 104 5660
[3] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689
[4] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
[5] Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U and Krausz F 2002 Nature 419 803
[6] Locher R, Castiglioni L, Lucchini M, Greif M, Gallmann L, Osterwalder J, Hengsberger M and Keller U 2015 Optica 2 405
[7] Cavalieri A L, Müller N, Uphues T, Yakovlev V S, Baltuška A, Horvath B, Schmidt B, Blümel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F and Heinzmann U 2007 Nature 449 1029
[8] Ossiander M, Siegrist F, Shirvanyan V, Pazourek R, Sommer A, Latka T, Guggenmos A, Nagele S, Feist J, Burgdörfer J, Kienberger R and Schultze M 2017 Nat. Phys. 13 280
[9] Cirelli C, Marante C, Heuser S, Petersson C L M, Galán Á J, Argenti L, Zhong S, Busto D, Isinger M, Nandi S, Maclot S, Rading L, Johnsson P, Gisselbrecht M, Lucchini M, Gallmann L, Dahlström J M, Lindroth E, Huillier A, Martín F and Keller U 2018 Nat. Commun. 9 955
[10] Wang H, Chini M, Chen S, Zhang C, He F, Cheng Y, Wu Y, Thumm U and Chang Z 2010 Phys. Rev. Lett. 105 143002
[11] Kitzler M, Milosevic N, Scrinzi A, Krausz F and Brabec T 2002 Phys. Rev. Lett. 88 173904
[12] Cattaneo L, Vos J, Lucchini M, Gallmann L, Cirelli C and Keller U 2016 Opt. Express 24 29060
[13] Klünder K, Dahlström M, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taieb R and Huillier A 2011 Phys. Rev. Lett. 106 143002
[14] Gruson V, Barreau L, Jiménez-Galan Á Risoud F, Caillat J, Maquet A, Carré B, Lepetit F, Hergott J F, Ruchon T, Argenti L, Taïeb R, Martín F and Saliéres P 2016 Science 354 734
[15] Busto D, Barreau L, Isinger M, Turconi M, Alexandridi C, Harth A, Zhong S, Squibb R J, Kroon D, Plogmaker S, Miranda M, Jiménez-Galán Á Argenti L, Arnold C L, Feifel R, Martín F, Gisselbrecht M, Huillier A and Saliéres P 2018 J. Phys. B: At. Mol. Opt. Phys. 51 044002
[16] Kotur M, Guénot D, Jiménez-Galán Á Kroon D, Larsen E W, Louisy M, Bengtsson S, Miranda M, Mauritsson J, Arnold C L, Canton S E, Gisselbrecht M, Carette T, Dahlström J M, Lindroth E, Maquet A, Argenti L, Martín F and Huillier A 2016 Nat. Commun. 7 10566
[17] Nisoli M, Silvestri S D and Svelto O 1996 Appl. Phys. Lett. 68 2793
[18] Nisoli M, Silvestri S D, Svelto O, Szipöcs R, Ferencz K, Spielmann C, Sartania S and Krausz F 1997 Opt. Lett. 22 522
[19] Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X and Wei Z Y 2013 Chin. Phys. Lett. 30 093201
[20] He P, Liu Y, Zhao K, Teng H, He X, Huang P, Huang H, Zhong S, Jiang Y, Fang S, Hou X and Wei Z 2017 Opt. Lett. 42 474
[21] Bergé L, Skupin S, Nuter R, Kasparian J and Wolf J P 2007 Rep. Prog. Phys. 70 1633
[22] Huillier A, Schafert K J and Kulande K C 1991 J. Phys. B: At. Mol. Opt. Phys. 24 3315
[23] Raabe N, Feng T, Witting T, Demircan A, Brée C and Steinmeyer G 2017 Phys. Rev. Lett. 119 123901
[24] Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L and Cundiff S T 2000 Science 288 635
[25] Jiang Y, Gao Y, Huang P, Zhao K, Xu S, Zhu J, Fang S, Teng H, Hou X and Wei Z 2019 Acta Phys. Sin. 68 214204 (in Chinese)
[26] Chang Z 2011 Fundamentals of Attosecond Optics (1st Edn.) (Boca Raton: Taylor and Francis Group) p. 39
[27] Lewenstein M, Balcou P, Ivanov M Y, Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
[28] Priori E, Cerullo G, Nisoli M, Stagira S, Silvestri S D, Villoresi P, Poletto L, Ceccherini P, Altucci C, Bruzzese R and Lisio C 2000 Phys. Rev. A 61 063801
[29] Sorensen S L, Aberg T, Tulkki J, Rachlew-kallen E, Sundestrom G and Kirm M 1994 Phys. Rev. A 50 1218
[30] Huppert M, Jordan I, Baykusheva D, Conta A and Wörner H J 2016 Phys. Rev. Lett. 117 093001
[31] Beetar J E, Gholam-Mirzaei S and Chini M 2018 Appl. Phys. Lett. 112 051102
[32] Ishii N, Xia P, Kanai T and Itatani J 2019 Opt. Express 27 11447
[33] Lu C, Wu W, Kuo S, Guo J, Chen M, Yang S and Kung A H 2019 Opt. Express 27 15638
[34] Huang H D, Teng H, Zhan M J, Xu S Y, Huang P, Zhu J F and Wei Z Y 2019 Acta Phys. Sin. 68 070602 (in Chinese)
[1] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[2] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[3] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[4] Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton
Song-Tao Fan(樊松涛), Yan-Yan Zhang(张颜艳), Lu-Lu Yan(闫露露), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2019, 28(6): 064204.
[5] Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2019, 28(6): 064205.
[6] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[7] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[8] Supercontinuum manipulation based on the influence of chirp on soliton spectral tunneling
Saili Zhao(赵赛丽), Huan Yang(杨华), Yilin Zhao(赵奕霖), Yuzhe Xiao(肖宇哲). Chin. Phys. B, 2018, 27(11): 114219.
[9] Intense supercontinuum generation in the near-ultraviolet range from a 400-nm femtosecond laser filament array in fused silica
Dongwei Li(李东伟), Lanzhi Zhang(张兰芝), Saba Zafar, He Song(宋鹤), Zuoqiang Hao(郝作强), Tingting Xi(奚婷婷), Xun Gao(高勋), Jingquan Lin(林景全). Chin. Phys. B, 2017, 26(7): 074213.
[10] Numerical investigation on broadband mid-infrared supercontinuum generation in chalcogenide suspended-core fibers
Kundong Mo(莫坤东), Bo Zhai(翟波), Jianfeng Li(李剑峰), E Coscelli, F Poli, A Cucinotta, S Selleri, Chen Wei(韦晨), Yong Liu(刘永). Chin. Phys. B, 2017, 26(5): 054216.
[11] Frequency-stabilized Yb:fiber comb with a tapered single-mode fiber
Yang Xie(谢阳), Hai-Nian Han(韩海年), Long Zhang(张龙), Zi-Jiao Yu(于子蛟), Zheng Zhu(朱政), Lei Hou(侯磊), Li-Hui Pang(庞利辉), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(4): 044208.
[12] Different supercontinuum generation processes in photonic crystal fibers pumped with a 1064-nm picosecond pulse
Chen Hong-Wei (谌鸿伟), Jin Ai-Jun (靳爱军), Chen Sheng-Ping (陈胜平), Hou Jing (侯静), Lu Qi-Sheng (陆启生). Chin. Phys. B, 2013, 22(8): 084205.
[13] Spectral modulation and supercontinuum generation assisted by infrared femtosecond plasma grating
Liu Zuo-Ye (刘作业), Sun Shao-Hua (孙少华), Shi Yan-Chao (史彦超), Ding Peng-Ji (丁鹏基), Liu Qing-Cao (刘情操), Liu Xiao-Liang (刘小亮), Ding Bao-Wei (丁宝卫), Hu Bi-Tao (胡碧涛). Chin. Phys. B, 2013, 22(7): 075204.
[14] Supercontinuum generated in all-normal dispersion photonic crystal fibers with picosecond pump pulses
Li Pan (李磐), Shi Lei (时雷), Mao Qing-He (毛庆和). Chin. Phys. B, 2013, 22(7): 074204.
[15] High stability supercontinuum generation in lead silicate SF57 photonic crystal fibers
Zhu Xing-Ping (朱星平), Li Shu-Guang (李曙光), Du Ying (杜颖), Han Ying (韩颖), Zhang Wen-Qi (张闻起), Ruan Yin-Lan (阮银兰), Heike Ebendorff-Heidepriem, Shahraam Afshar, Tanya M. Monro. Chin. Phys. B, 2013, 22(1): 014215.
No Suggested Reading articles found!