Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 033201    DOI: 10.1088/1674-1056/27/3/033201
RAPID COMMUNICATION Prev   Next  

Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement

Linjie Zhang(张临杰)1,2, Jiasheng Liu(刘家晟)1,2, Yue Jia(贾玥)1,2, Hao Zhang(张好)1,2, Zhenfei Song(宋振飞)3, Suotang Jia(贾锁堂)1,2
1 Institute of Laser Spectroscopy, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 National Institute of Metrology, Beijing 100029, China
Abstract  

The geometry effect of a vapor cell on the metrology of a microwave electric field is investigated. Based on the splitting of the electromagnetically induced transparency spectra of cesium Rydberg atoms in a vapor cell, high-resolution spatial distribution of the microwave electric field strength is achieved for both a cubic cell and a cylinder cell. The spatial distribution of the microwave field strength in two dimensions is measured with sub-wavelength resolution. The experimental results show that the shape of a vapor cell has a significant influence on the abnormal spatial distribution because of the Fabry-Pérot effect inside a vapor cell. A theoretical simulation is obtained for different vapor cell wall thicknesses and shows that a restricted wall thickness results in a measurement fluctuation smaller than 3% at the center of the vapor cell.

Keywords:  Rydberg atom      microwave electric field strength      electromagnetically induced transparency (EIT)      Aulter-Towns splitting  
Received:  17 November 2017      Revised:  01 January 2018      Accepted manuscript online: 
PACS:  32.80.Ee (Rydberg states)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA03044200 and 2016YFF0200104), the National Natural Science Foundation of China (Grant Nos. 91536110, 61505099, and 61378013), and the Fund for Shanxi "331 Project" Key Subjects Construction, China.

Corresponding Authors:  Linjie Zhang     E-mail:  zlj@sxu.edu.cn

Cite this article: 

Linjie Zhang(张临杰), Jiasheng Liu(刘家晟), Yue Jia(贾玥), Hao Zhang(张好), Zhenfei Song(宋振飞), Suotang Jia(贾锁堂) Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement 2018 Chin. Phys. B 27 033201

[1] Koschorreck M, Napolitano M, Dubost B and Mitchell M W 2010 Phys. Rev. Lett. 104 093602
[2] Hanneke D, Fogwell S and Gabrielse G 2008 Phys. Rev. Lett. 100 120801
[3] Savukov I M, Seltzer S J, Romalis M V and Sauer K L 2005 Phys. Rev. Lett. 95 063004
[4] Horsley A and Treutlein P 2016 Appl. Phys. Lett. 108 211102
[5] Sedlacek J, Schwettmann A, Kubler H, Low R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819
[6] Kanda M 1994 IEEE Transactions on Electromagnetic Compatibility 36 261
[7] Song Z, Feng Z, Liu X, Li D, Zhang H, Liu J and Zhang L 2017 IEEE Antennas and Wireless Propagation Letters 16 1589
[8] Kumar S, Fan H, Kubler H, Sheng J and Shaffer J P 2017 Sci. Rep. 7 42981
[9] Kumar S, Fan H, Kübler H, Jahangiri A J and Shaffer J P 2017 Opt. Express 25 8625
[10] Fan H, Kumar S, Daschner R, Kubler H and Shaffer J P 2014 Opt. Lett 39 3030
[11] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N and Raithel G 2014 Appl. Phys. Lett. 104 244102
[12] Zhou J, Zhang W Q, Hao Y M, Jin T, Jiang X H, Zhang H and Zhang L J 2016 Journal of Quantum Optics 22 311 (in Chinese)
[13] Liu J S, Zhang H, Song Z F, Zhang L J and Jia S T 2016 IEEE MTT-S International Conference Bei jing, China, July 27-29, 2016
[14] Sedlacek J A, Schwettmann A, Kübler H and Shaffer J P 2014 Phys. Rev. Lett. 111 063001
[15] Fan H Q, Kumar S, Sheng J T and Shaffer J P 2015 Phys. Rev. Appl. 4 044015
[16] Westphal W B 1977 Laboratory for Insulation Research, Massachusetts Institute of Technology Technical Report No. AFML-TR-74-250
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[3] Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健). Chin. Phys. B, 2021, 30(8): 080305.
[4] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[5] High-precision three-dimensional Rydberg atom localization in a four-level atomic system
Hengfei Zhang(张恒飞), Jinpeng Yuan(元晋鹏), Lirong Wang(汪丽蓉), Liantuan Xiao(肖连团), and Suo-tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(5): 053202.
[6] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[7] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[8] Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms
Xuerong Shi(师雪荣), Hao Zhang(张好), Mingyong Jing(景明勇), Linjie Zhang(张临杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2020, 29(1): 013201.
[9] Tunable multistability and nonuniform phases in a dimerized two-dimensional Rydberg lattice
Han-Xiao Zhang(张焓笑), Chu-Hui Fan(范楚辉), Cui-Li Cui(崔淬砺), Jin-Hui Wu(吴金辉). Chin. Phys. B, 2020, 29(1): 013204.
[10] Properties of collective Rabi oscillations with two Rydberg atoms
Dan-Dan Ma(马丹丹), Ke-Ye Zhang(张可烨), Jing Qian(钱静). Chin. Phys. B, 2019, 28(1): 013202.
[11] Effect of residual Doppler averaging on the probe absorption in cascade type system: A comparative study
Suman Mondal, Arindam Ghosh, Khairul Islam, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2018, 27(9): 094204.
[12] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[13] Rydberg quantum controlled-phase gate with one control and multiple target qubits
S L Su(苏石磊). Chin. Phys. B, 2018, 27(11): 110304.
[14] Velocity-selective spectroscopy measurements of Rydberg fine structure states in a hot vapor cell
Jun He(何军), Dongliang Pei(裴栋梁), Jieying Wang(王杰英), Junmin Wang(王军民). Chin. Phys. B, 2017, 26(11): 113202.
[15] Laser frequency locking based on Rydberg electromagnetically induced transparency
Yuechun Jiao(焦月春), Jingkui Li(李敬奎), Limei Wang(王丽梅), Hao Zhang(张好), Linjie Zhang(张临杰), Jianming Zhao(赵建明), Suotang Jia(贾锁堂). Chin. Phys. B, 2016, 25(5): 053201.
No Suggested Reading articles found!