ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Generation of squeezed vacuum on cesium D2 line down to kilohertz range |
Jian-Feng Tian(田剑锋)1, Guan-Hua Zuo(左冠华)2, Yu-Chi Zhang(张玉驰)2, Gang Li(李刚)1, Peng-Fei Zhang(张鹏飞)1, Tian-Cai Zhang(张天才)1 |
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2. College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We report the experimental generation of a squeezed vacuum at frequencies ranging from 2.5 kHz to 200 kHz that is resonant on the cesium D2 line by using a below-threshold optical parametric oscillator (OPO). The OPO is based on a periodically-poled KTiOPO4 (PPKTP) crystal that is pumped using a bow-tie four-mirror ring frequency doubler. The phase of the squeezed light is controlled using a quantum noise locking technique. At a pump power of 115 mW, maximum quadrature phase squeezing of 3.5 dB and anti-squeezing of 7.5 dB are detected using a home-made balanced homodyne detector. This squeezed vacuum at an atomic transition in the kilohertz range is an ideal quantum source for quantum metrology of enhancing measurement precision, especially for ultra-sensitive measurement of weak magnetic fields when using a Cs atomic magnetometer in the audio frequency range.
|
Received: 07 June 2017
Revised: 18 July 2017
Accepted manuscript online:
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.65.Yj
|
(Optical parametric oscillators and amplifiers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11634008, 61227902, 11574187, and 11674203), the National Key Research and Development Program of China (Grant No. 2017YFA0304500), and the Fund of "1331 Project" Key Subjects Construction of Shanxi Province, China. |
Corresponding Authors:
Yu-Chi Zhang
E-mail: yczhang@sxu.edu.cn
|
Cite this article:
Jian-Feng Tian(田剑锋), Guan-Hua Zuo(左冠华), Yu-Chi Zhang(张玉驰), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才) Generation of squeezed vacuum on cesium D2 line down to kilohertz range 2017 Chin. Phys. B 26 124206
|
[1] |
Schmitt-Manderbach T, Weier H, Furst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kursiefer C, Rarity J G, Zeilinger A and Weinfurter H 2007 Phys. Rev. Lett. 98 010504
|
[2] |
Koschorreck M, Napolitano M, Dubost B and Mitchell M W 2010 Phys. Rev. Lett. 104 093602
|
[3] |
Caves C M 1981 Phys. Rev. D 23 1693
|
[4] |
Li W F, Du J J, Wen R J, Li G and Zhang T C 2014 J. Appl. Phys. 115 123106
|
[5] |
Appel J, Figueroa E, Korystov D, Lobino M and Lvovsky A I 2008 Phys. Rev. Lett. 100 093602
|
[6] |
Dantan A and Pinard M 2004 Phys. Rev. A 69 043810
|
[7] |
Vahlbruch H, Mehmet M, Danzmann K and Schnabel R 2016 Phys. Rev. Lett. 117 110801
|
[8] |
Walker N G and Carroll J E 1986 Opt. Quantum Electron. 18 355
|
[9] |
Abbott B et al. 2004 Nucl. Instrum. Methods Phys. Res. A 517 26
|
[10] |
Akamatsu D, Akiba K and Kozuma M 2004 Phys. Rev. Lett. 92 20
|
[11] |
Hsu M T L, Hétet G, Glöckl O, Longdell J J, Buchler B C, Bachor H A and Lam P K 2006 Phys. Rev. Lett. 97 183601
|
[12] |
Dougherty M K, Khurana K K, Neubauer F M, Russell C T, Saur J, Leisner J S and Burton M E 2006 Science 311 1406
|
[13] |
Xia H, Baranga A B, Hoffman D and Romalis M V 2006 Appl. Phys. Lett. 89 211104
|
[14] |
Bison G, Castagna N, Hofer A, Knowles P, Schenker J L, Kasprzak M, Saudan H and Weis A 2009 Appl. Phys. Lett. 95 173701
|
[15] |
McKenzie K, Grosse N, Bowen W P, Whitcomb S, Gray M B, McClell D E and Lam P K 2004 Phys. Rev. Lett. 93 161105
|
[16] |
Vahlbruch H, Chelkowski S, Danzmann K and Schnabel R 2007 New J. Phys. 9 371
|
[17] |
Stefszky M S, Mow-Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K and McClelland D E 2012 Class. Quantum Grav. 29 145015.
|
[18] |
Takeno Y S, Yukawa M, Yonezawa H and Furusawa A 2007 Opt. Express 15 4321
|
[19] |
Burks S, Ortalo J, Chiummo A, Jia X, Villa F, Bramati A, Laurat J and Giacobino E 2009 Opt. Express 17 3777
|
[20] |
Wolfgramm F, Ceré A, Beduini F A, Predojević A and Koschorreck M 2010 Phys. Rev. Lett. 105 053601
|
[21] |
McKenzie K, Mikhailov E E, Goda K, Lam P K, Grosse N, Gray M B, Mavalvala N and McClell D E 2005 J. Opt. B:Quantum Semiclass. Opt. 7 421
|
[22] |
Tian J F, Yang C, Xue J, Zhang Y C, Li G and Zhang T C 2016 J. Opt. 18 055506
|
[23] |
Xue J, Qin J L, Zhang Y C, Li G, Zhang P F, Zhang T C and Peng K C 2016 Acta Phys. Sin. 65 044211(in Chinese)
|
[24] |
Zhang T C, Goh K W, Chou C W, Lodahl P and Kimble H J 2003 Phys. Rev. A 67 033802
|
[25] |
Wu L A, Xiao M and Kimble H J 1987 J. Opt. Soc. Am. B 4 1465
|
[26] |
Hamilton C E 1992 Opt. Lett. 17 728
|
[27] |
Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K and Schnabel R 2006 Phys. Rev. Lett. 97 011101
|
[28] |
Hansson G, Karlsson H, Wang S H and Laurell F 2000 Appl. Opt. 39 5058
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|