ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Parallel generation of 31 tripartite entangled states based on optical frequency combs |
Jing Zhang(张静)1,2,3, Yan-Fang Wang(王艳芳)1,2, Xiao-Yu Liu(刘晓宇)1,2, Rong-Guo Yang(杨荣国)1,2,3 |
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China;
2. College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China;
3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Quantum entangled states, especially those having particular properties, are key resources for quantum information and quantum computation. In this paper, we put forward a new scheme to produce 31 continuous-variable (CV) tripartite entanglement fields based on three optical frequency combs via cascade nonlinear processes in an optical parametric cavity, and investigate the spectral characteristics of three frequency combs. The center wavelengths of the three combs are designed as 852 nm, 780 nm (atomic transition lines), and 1550 nm (fiber communication wavelength). The positivity under partial transposition (PPT) criterion, which is sufficient and necessary, is used to evaluate the entanglement in each group of comb lines. This scheme is experimentally feasible and valuable for constructing quantum information networks in future.
|
Received: 05 June 2017
Revised: 03 August 2017
Accepted manuscript online:
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504218, 11634008, 11674203, 11574187, 61108003, and 61227902), and the National Key Research and Development Program of China (Grant No. 2016YFA0301404). |
Corresponding Authors:
Jing Zhang
E-mail: zjj@sxu.edu.cn
|
Cite this article:
Jing Zhang(张静), Yan-Fang Wang(王艳芳), Xiao-Yu Liu(刘晓宇), Rong-Guo Yang(杨荣国) Parallel generation of 31 tripartite entangled states based on optical frequency combs 2017 Chin. Phys. B 26 124205
|
[1] |
Johnson T J, Bartlett S D and Sanders B C 2012 Nat. Commun. 8 1083
|
[2] |
Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D and Peng K C 2003 Phys. Rev. Lett. 90 167903
|
[3] |
Madsen L S, Usenko V C, Lassen M, Filip R and Andersen U L 2012 Nat. Commun. 8 1083
|
[4] |
van Loock P, Weedbrook C and Gu M 2014 Phys. Rev. Lett. 113 023602
|
[5] |
Ma Y H, Yang G H, Mu Q X and Zhou L 2009 J. Opt. Soc. Am. B 26(4) 713-717
|
[6] |
Nha H 2012 Phys. Rev. A 77 062328
|
[7] |
van Loock P and Braunstein S L 2000 Phys. Rev. Lett. 84 3482-3485
|
[8] |
Aoki T, Takei N, Yonezawa H K, Hiraoka T and Furusawa A 2003 Phys. Rev. A 91 080404
|
[9] |
Su X L, Tan A H, Jia X J, Zhang J, Xie C D and Peng K C 2007 Phys. Rev. Lett. 98 070502
|
[10] |
Yang R G, Wang J J, Zhang J and Sun H X 2016 Chin, Phys.B 25 074208
|
[11] |
Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706-709
|
[12] |
Li X Y, Pan Q, Jing J T, Zhang J, Xie C D and Peng K C 2002 Phys. Rev. Lett. 88 047904
|
[13] |
Allevi A, BondaniMand ParisMG A and Andreoni A 2008 Phys. Rev. A 78 063801
|
[14] |
Tan A H, Xie C D and Peng K C 2012 Phys. Rev. A 85 013819
|
[15] |
Yang R G, Zhai S Q, liu K, Zhang J X and Gao J R 2010 J. Opt. Soc. Am. B 27 2721
|
[16] |
Li T Y, Mitazaki R, Kasai K, Okada-Shudo Y, Watanabe M and Zhang Y 2015 Phys. Rev. A 91 023833
|
[17] |
Qin Z Z, Gao L M, Wang H L, Marino A M, Zhang W P and Jing J T 2014 Phys. Rev. Lett. 113 023602
|
[18] |
Cai Y, Feng J L, Wang H L, Ferrini G, Xu X Y, Jing J T and Treps N 2015 Phys. Rev. A 91 013843
|
[19] |
Cao L M, Qi J, Du J J and Jing J T 2007 Phys. Rev. Lett. 109 253604
|
[20] |
Wang H L, Fabre C and Jing J T 2017 Phys. Rev. A 95 051802
|
[21] |
Zheng Z, Wang H L, Cheng B and Jing J T 2017 Opt. Lett. 42 2754
|
[22] |
Jia X J, Yan Z H, Duan Z Y, Su X L, Wang H, Xie C D and Peng K C 2007 Phys. Rev. Lett. 109 253604
|
[23] |
Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R and Pfister O 2011 Phys. Rev. Lett. 107 030505
|
[24] |
Yang R G, Zhang J, Zhai S Q, Liu K, Zhang J X and Gao J R 2014 Phys. Rev. Lett. 112 120505
|
[25] |
Yang R G, Zhang J, Zhai Z H, Zhai S Q, Liu K and Gao J R 2015 Opt. Express 23 21323-21333
|
[26] |
Chen M, Menicucci N C and Pfister O 2014 Phys. Rev. Lett. 112 120505
|
[27] |
Pooser R and Jing J T 2014 Phys. Rev. A 90 043841
|
[28] |
Yang R G, Wang J J, Zhang J, Liu K and Gao J R 2016 J. Opt. Soc. Am. B 33 2424
|
[29] |
Lifshitz R, Arie A and Bahabad A 2005 Phys. Rev. Lett. 95 133901
|
[30] |
Raymer M G and Noh J 2005 Phys. Rev. A 72 023825
|
[31] |
Coelho A S, Barbosa F A S, Cassemiro K N, Villar A S, Martinelli M and Nussenzveig P 2009 Science 326 823
|
[32] |
Simon R 2009 Phys. Rev. Lett. 84 2726
|
[33] |
Vollmer C E, Schulze D, Eberle T, Handchen V, Fiurasek J and Schnabel R 2013 Phys. Rev. Lett. 111 230505
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|