Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087703    DOI: 10.1088/1674-1056/26/8/087703
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method

Yan Wang(王艳)1,2, Ying-Cai Xie(谢英才)1, Shu-Yi Zhang(张淑仪)2, Xiao-Dong Lan(兰晓东)2
1 School of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China;
2 Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  

Propagation characteristics of surface acoustic waves (SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional (3D) finite element method. At first, for (1120) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k2 of 2.4% in (90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k2 of 3.81% in (56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency (TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.

Keywords:  surface acoustic wave      ZnO films      electromechanical coupling coefficient      temperature coefficient of frequency      3D finite element method  
Received:  20 March 2017      Revised:  12 April 2017      Accepted manuscript online: 
PACS:  77.55.hf (ZnO)  
  77.65.Dq (Acoustoelectric effects and surface acoustic waves (SAW) in piezoelectrics)  
  68.35.Iv (Acoustical properties)  
  68.60.-p (Physical properties of thin films, nonelectronic)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11304160), the Natural Science Foundation of Jiangsu Provincial Higher Education Institutions, China (Grant No. 13KJB140008), and the Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY213018).

Corresponding Authors:  Yan Wang, Shu-Yi Zhang     E-mail:  ywang@njupt.edu.cn;zhangsy@nju.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东) Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method 2017 Chin. Phys. B 26 087703

[1] Ruby R, Bradley P, Larson J D and Oshmyansky Y 1999 Electron. Lett. 35794
[2] Wang W B, Gu H, He X L, Xuan W P, Chen J K, Wang X Z and Luo J K 2015 Chin. Phys. B 24 057701
[3] Chu S Y, Water W and Liaw J T 2003 Ultrasonics 41 133
[4] Lan X D, Zhang S Y, Wang Y, Fan L and Shui X J 2015 Sensors Actuat. A: Phys. 230 136
[5] Tanaka A, Yanagitani T, Matsukawa M and Watanabe Y 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 2709
[6] Liu J and Jiang Y J 2010 Chin. Phys. B 19 116201
[7] Matsuo T, Yanagitani T, Matsukawa M and Watanabe Y 2007 Proc. IEEE Ultrasonics Symp. 1229
[8] Krishnaswany S V, McAvoy B R and Moore R A 1983 Proc. IEEE Ultrasonics Symp. 531
[9] Wang J S and Lakin K M 1983 Appl. Phys. Lett. 42 352
[10] Mitsuyu T, Ono S and Wasa K 1980 J. Appl. Phys. 51 2464
[11] Hiyama S, Yanagitani T, Takayanagi S, Kato Y and Matsukawa M 2014 Proc. IEEE Ultrasonics Symp. 765
[12] Wang Y, Zhang S Y, Fan L, Shui X J, Zhang Z N and Wasa K 2013 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 1213
[13] Wang Y, Zhang S Y, Fan L, Shui X J and Yang Y T 2015 Chin. Phys. Lett. 32 086802
[14] Yanagitani T, Nohara T, Matsukawa M, Watanabe Y and Otani T 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 2140
[15] Wu S, Lin Z X, Ro R Y and Lee M S 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 1237
[16] Lan X D, Zhang S Y, Fan L and Wang Y 2016 Sensors 16 16111112
[17] Cheng C J and Atashbar M Z 2009 Sensors 9 1072
[18] Bjurström J, Wingqvist G, Yantchev V and Katardjiev I 2007 J. Micromech. Microeng. 17 651
[19] Luo J T, Quan A J, Fu C and Li H L 2017 J. Alloys Compd. 693 558
[20] Farnell G W and Adler E L 1972 Physical Acoustics, (ed. Mason W P)
[1] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[2] Theoretical analysis and experimental validation of radial cascaded composite ultrasonic transducer
Xiao-Yu Wang(王晓宇), Zhi-Xin Yu(余芷欣), Jing Hu(胡静), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(4): 040701.
[3] Influence of the anisotropy on the magneto-acoustic response of magnetic surface acoustic wave resonators
Yawei Lu(鲁亚巍), Wenbin Hu(胡文彬), Wan Liu(刘婉), Feiming Bai(白飞明). Chin. Phys. B, 2020, 29(6): 067504.
[4] Fabrication and characterization of one-port surface acoustic wave resonators on semi-insulating GaN substrates
Xue Ji(吉雪), Wen-Xiu Dong(董文秀), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), Ke Xu(徐科). Chin. Phys. B, 2019, 28(6): 067701.
[5] Nondestructive determination of film thickness with laser-induced surface acoustic waves
Xiao Xia(肖夏), Kong Tao(孔涛), Qi Hai Yang(戚海洋), Qing Hui Quan(秦慧全). Chin. Phys. B, 2018, 27(9): 096802.
[6] Stoney formula for piezoelectric film/elastic substrate system
Wang-Min Zhou(周旺民), Wang-Jun Li(李望君), Sheng-Yun Hong(洪圣运), Jie Jin(金杰), Shu-Yuan Yin(尹姝媛). Chin. Phys. B, 2017, 26(3): 037701.
[7] Topological charge pump by surface acoustic waves
Yi Zheng(郑一), Shi-Ping Feng(冯世平), Shi-Jie Yang(杨师杰). Chin. Phys. B, 2016, 25(6): 067301.
[8] Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors
Wang Wen-Bo (王文博), Gu Hang (谷航), He Xing-Li (何兴理), Xuan Wei-Peng (轩伟鹏), Chen Jin-Kai (陈金凯), Wang Xiao-Zhi (汪小知), Luo Ji-Kui (骆季奎). Chin. Phys. B, 2015, 24(5): 057701.
[9] Influence of roughness on the detection of mechanical characteristics of low-k film by the surface acoustic waves
Xiao Xia (肖夏), Tao Ye (陶冶), Sun Yuan (孙远). Chin. Phys. B, 2014, 23(10): 106803.
[10] Nanoscaled ZnO films used as enhanced substrates for fluorescence detection of dyes
Liu Yan-Song(刘艳松), Yi Fu, Ramachandram Badugu, Joseph R. Lakowicz, and Xu Xiao-Liang(许小亮) . Chin. Phys. B, 2012, 21(3): 037803.
[11] Influence of adhesive layer properties on laser-generated ultrasonic waves in thin bonded plates
Sun Hong-Xiang(孙宏祥), Xu Bai-Qiang(许伯强), Zhang Hua(张华), Gao Qian(高倩), and Zhang Shu-Yi(张淑仪). Chin. Phys. B, 2011, 20(1): 014302.
[12] Ferromagnetism in Eu-doped ZnO films deposited by radio-frequency magnetic sputtering
Tan Yong-Sheng(谭永胜), Fang Ze-Bo(方泽波), Chen Wei(陈伟), and He Pi-Mo(何丕模). Chin. Phys. B, 2010, 19(9): 097502.
[13] Preparation of transparent conductive ZnO:Tb films and their photoluminescence properties
Fang Ze-Bo (方泽波), Tan Yong-Sheng (谭永胜), Liu Xue-Qin (刘雪芹), Yang Ying-Hu (杨映虎), Wang Yin-Yue (王印月). Chin. Phys. B, 2004, 13(8): 1330-1333.
[14] Ultraviolet emission of ZnO film prepared by electrophoretic deposition
Wang Zhi-Jun (王志军), Wang Zhi-Jian (王之建), Li Shou-Chun (李守春), Wang Ze-Heng (王泽恒), Lü You-Ming (吕有明), Yuan Jin-Shan (元金山). Chin. Phys. B, 2004, 13(5): 750-753.
[15] Investigation of titanium nitride coating by broadband laser ultrasonic spectroscopy
Gao Wei-Min (高伟民), Christ Glorieux, Walter Lauriks, Jan Thoen. Chin. Phys. B, 2002, 11(2): 132-138.
No Suggested Reading articles found!