Please wait a minute...
Chinese Physics, 2002, Vol. 11(2): 132-138    DOI: 10.1088/1009-1963/11/2/306
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Investigation of titanium nitride coating by broadband laser ultrasonic spectroscopy

Gao Wei-Min (高伟民)ab, Christ Glorieuxac,Walter Lauriksa, Jan Thoena
a Laboratorium voor Akoestiek en Thermische Fysica, Departement Natuurkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium; b Lithography Department, Silicon Process Technology Division, Imec, Kapeldreef 75, B-3001 Leuven, Belg; c Postdoctoral Researcher for Fonds voor Wetenschappelijk Onderzoek-Vlaanderen, Belgium
Abstract  We present a laser ultrasonic method to investigate a titanium nitride (TiN) coating specimen. The technique is based on the principle of surface acoustic wave (SAW) dispersion during acoustic propagation on a half-space with the presence of a thin layer. Due to the high efficiency of laser line-source excitation, we have been able to generate and detect a SAW with an excellent signal-to-noise ratio in a wide frequency band. An inverse fitting algorithm was employed to extract simultaneously the thickness and the elastic parameters of the TiN coating from the experimental SAW velocity dispersion curve.
Keywords:  surface acoustic wave      laser ultrasonics      thin film      inverse problem  
Received:  02 August 2001      Revised:  10 October 2001      Accepted manuscript online: 
PACS:  43.35.Cg (Ultrasonic velocity, dispersion, scattering, diffraction, and Attenuation in solids; elastic constants)  
  02.30.Zz (Inverse problems)  
  42.62.Fi (Laser spectroscopy)  
  43.35.Ns (Acoustical properties of thin films)  
  43.25.Ed (Effect of nonlinearity on velocity and attenuation)  

Cite this article: 

Gao Wei-Min (高伟民), Christ Glorieux, Walter Lauriks, Jan Thoen Investigation of titanium nitride coating by broadband laser ultrasonic spectroscopy 2002 Chinese Physics 11 132

[1] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[2] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[3] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[4] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[5] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[6] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[7] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[8] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[9] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[10] Accurate capacitance-voltage characterization of organic thin films with current injection
Ming Chu(褚明), Shao-Bo Liu(刘少博), An-Ran Yu(蔚安然), Hao-Miao Yu(于浩淼), Jia-Jun Qin(秦佳俊), Rui-Chen Yi(衣睿宸), Yuan Pei(裴远), Chun-Qin Zhu(朱春琴), Guang-Rui Zhu(朱光瑞), Qi Zeng(曾琪), and Xiao-Yuan Hou(侯晓远). Chin. Phys. B, 2021, 30(8): 087301.
[11] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[12] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[13] Effect of hydrogen plasma implantation on the micro-structure and magnetic properties of hcp-Co8057Fe4Ir16 thin films
Hui Wang(王辉), Meng Wu(吴猛), Haiping Zhou(周海平), Bo Zhang(张博), Shixin Hu(胡世欣), Tianyong Ma(马天勇), Zhiwei Li(李志伟), Liang Qiao(乔亮), Tao Wang(王涛), and Fashen Li(李发伸). Chin. Phys. B, 2021, 30(5): 057505.
[14] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[15] Multi-layer structures including zigzag sculptured thin films for corrosion protection of AISI 304 stainless steel
Fateme Abdi. Chin. Phys. B, 2021, 30(3): 038106.
No Suggested Reading articles found!