Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 074102    DOI: 10.1088/1674-1056/25/7/074102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Electromagnetic backscattering from one-dimensional drifting fractal sea surface II:Electromagnetic backscattering model

Tao Xie(谢涛)1,2, William Perrie3, Shang-Zhuo Zhao(赵尚卓)1,2, He Fang(方贺)1,2, Wen-Jin Yu(于文金)1,2, Yi-Jun He(何宜军)1,2
1 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2 Jiangsu Engineering Technology Research Center of Marine Environment Detection, Nanjing 210044, China;
3 Bedford Institute of Oceanography, B2Y 4A2, Dartmouth, NS, Canada
Abstract  

Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface.

Keywords:  fractal      ocean current      electromagnetic scattering      normalized radar cross section (NRCS)  
Received:  20 October 2015      Revised:  12 January 2016      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  84.40.Xb (Telemetry: remote control, remote sensing; radar)  
  91.50.Iv (Marine magnetics and electromagnetics)  
  92.10.Hm (Ocean waves and oscillations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.

Corresponding Authors:  Tao Xie     E-mail:  xietao@nuist.edu.cn

Cite this article: 

Tao Xie(谢涛), William Perrie, Shang-Zhuo Zhao(赵尚卓), He Fang(方贺), Wen-Jin Yu(于文金), Yi-Jun He(何宜军) Electromagnetic backscattering from one-dimensional drifting fractal sea surface II:Electromagnetic backscattering model 2016 Chin. Phys. B 25 074102

[1] Dugan J P and Piotrowski C C 2003 Remote Sens. Env. 84 309
[2] Dugan J P and Piotrowski C C 2012 J. Geophys. Res. 117 C03020
[3] Brrick D E, Evans M W and Weber B L 1977 Science 198 138
[4] Chapman R D, Shay L K, Graber H C, Edson J B, Karachintsev A, Trump C L and Ross D B 1997 J. Geophys. Res. 102 18737
[5] Paduan J D and Shulman I 2004 J. Geophys. Res. 109 C07S09
[6] Abascal A J, Castanedo S, Fernandez V and Medina R 2012 Ocean Dyn. 62 1073
[7] Paduan J D and Washburn L 2013 Annu. Review Mari. Sci. 5 115
[8] Ullman D S, O'Donnell J, Kohut J, Fake T and Allen A 2006 J. Geophys. Res. 111 C12005
[9] Lorente P, Piedracoba S and Alvarez-Fanjul E 2015 Cont. Shelf Res. 92 1
[10] de MicheleM, Leprince S, Thiebot J, Raucoules D and Binet R 2012 Remote Sens. Env. 11 9266
[11] Piotrowski C C and Dugan J P 2002 IEEE Trans. Geosci. Remote Sens. 40 2606
[12] Dugan J P, Anderson P P, Piotrowski C C and Zuckerman S B 2014 IEEE Trans. Geosci. Remote Sens. 52 3895
[13] Shuchman R A, Lyzenga D R and Klooster A 1981 Exploitation of SAR Data for Measurement of Ocean Currents and Wave Velocities, Report (NASA) A1
[14] Chapron B, Collard F and Ardhum F 2005 J. Geophys. Res. 110 C07008
[15] Kudryavtsev V, Akimov D, Johannessen J A and Chapron B 2005 J. Geophys. Res. 110 C07016
[16] Johannessen J A, Chapron B, Collard F, Kudryavtsev V, Mouche A, Akimov D and Dagestad K F 2008 Geophys. Res. Lett. 35 L22608
[17] Goldstein R M and Zebker H A 1987 Nature 328 707
[18] Romeiser R 2005 IEEE J. Ocean Eng. 30 552
[19] Romeiser R, Runge H, Suchandt S, Sprenger J, Weilbeer H, Sohrmann A and Stammer D 2007 IEEE Trans. Geosci. Remote Sens. 45 4019
[20] Xie T, Fang H, Zhao S, Yu W and He Y 2016 Chin. Phys. B 25 064101
[21] Leung T, Kong J and Robert T 1985 Theory of Microwave Remote Sending (New York: Wiley) p. 70
[1] Multifractal analysis of the software evolution in software networks
Meili Liu(刘美丽), Xiaogang Qi(齐小刚), and Hao Pan(潘浩). Chin. Phys. B, 2022, 31(3): 030501.
[2] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[3] Fractal sorting vector-based least significant bit chaotic permutation for image encryption
Yong-Jin Xian(咸永锦), Xing-Yuan Wang(王兴元), Ying-Qian Zhang(张盈谦), Xiao-Yu Wang(王晓雨), and Xiao-Hui Du(杜晓慧). Chin. Phys. B, 2021, 30(6): 060508.
[4] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[5] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[6] Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid
Gan Ren(任淦). Chin. Phys. B, 2021, 30(1): 016105.
[7] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[8] Dynamical response of a neuron-astrocyte coupling system under electromagnetic induction and external stimulation
Zhi-Xuan Yuan(袁治轩), Pei-Hua Feng(冯沛华), Meng-Meng Du(独盟盟), Ying Wu(吴莹). Chin. Phys. B, 2020, 29(3): 030504.
[9] Reducing the calculation workload of the Green function for electromagnetic scattering in a Schwarzschild gravitational field
Shou-Qing Jia(贾守卿). Chin. Phys. B, 2019, 28(7): 070401.
[10] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[11] Polarization ratio characteristics of electromagnetic scattering from sea ice in polar areas
Li Zhao(赵立), Tao Xie(谢涛), Lei Meng(孟雷), William Perrie, Jin-Song Yang(杨劲松), He Fang(方贺), Han Chen(陈韩), Run-Bing Ai(艾润冰). Chin. Phys. B, 2018, 27(12): 124102.
[12] Study on the phase transition of the fractal scale-free networks
Qing-Kuan Meng(孟庆宽), Dong-Tai Feng(冯东太), Yu-Ping Sun(孙玉萍), Ai-Ping Zhou(周爱萍), Yan Sun(孙艳), Shu-Gang Tan(谭树刚), Xu-Tuan Gao(高绪团). Chin. Phys. B, 2018, 27(10): 106402.
[13] Detection of meso-micro scale surface features based on microcanonical multifractal formalism
Yuanyuan Yang(杨媛媛), Wei Chen(陈伟), Tao Xie(谢涛), William Perrie. Chin. Phys. B, 2018, 27(1): 010502.
[14] Polaron effects in cylindrical GaAs/AlxGa1-xAs core-shell nanowires
Hui Sun(孙慧), Bing-Can Liu(刘炳灿), Qiang Tian(田强). Chin. Phys. B, 2017, 26(9): 097302.
[15] Multifractal modeling of the production of concentrated sugar syrup crystal
Sheng Bi(闭胜), Jianbo Gao(高剑波). Chin. Phys. B, 2016, 25(7): 070502.
No Suggested Reading articles found!