Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018802    DOI: 10.1088/1674-1056/25/1/018802
Special Issue: TOPICAL REVIEW — Fundamental physics research in lithium batteries
TOPICAL REVIEW—Fundamental physics research in lithium batteries Prev   Next  

All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science

Xiayin Yao(姚霞银), Bingxin Huang(黄冰心), Jingyun Yin(尹景云), Gang Peng(彭刚), Zhen Huang(黄祯), Chao Gao(高超), Deng Liu(刘登), Xiaoxiong Xu(许晓雄)
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  

The scientific basis of all-solid-state lithium batteries with inorganic solid electrolytes is reviewed briefly, touching upon solid electrolytes, electrode materials, electrolyte/electrode interface phenomena, fabrication, and evaluation. The challenges and prospects are outlined as well.

Keywords:  all-solid-state lithium batteries      inorganic solid electrolytes      interface phenomena      rechargeable lithium batteries  
Received:  14 May 2015      Revised:  30 June 2015      Accepted manuscript online: 
PACS:  88.80.ff (Batteries)  
  82.45.Gj (Electrolytes)  
  68.35.Fx (Diffusion; interface formation)  
  82.47.Aa (Lithium-ion batteries)  
Fund: 

Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA050906), the National Natural Science Foundation of China (Grant Nos. 51172250 and 51202265), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010201), and Zhejiang Province Key Science and Technology Innovation Team, China (Grant No. 2013PT16).

Corresponding Authors:  Xiaoxiong Xu     E-mail:  xuxx@nimte.ac.cn

Cite this article: 

Xiayin Yao(姚霞银), Bingxin Huang(黄冰心), Jingyun Yin(尹景云), Gang Peng(彭刚), Zhen Huang(黄祯), Chao Gao(高超), Deng Liu(刘登), Xiaoxiong Xu(许晓雄) All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science 2016 Chin. Phys. B 25 018802

[1] Xu X, Qiu Z, Guan Y, Huang Z and Jin Y 2013 Energy Storage Science and Technology 2 331 (in Chinese)
[2] Scrosati B and Garche J 2010 J. Power Sources 195 2419
[3] Li W, Dahn J R and Wainwright D S 1994 Science 264 1115
[4] Xu X, Wen Z, Yang X, Zhang J and Gu Z 2006 Solid State Ionics 177 2611
[5] Xu X, Wen Z, Wu J and Yang X 2007 Solid State Ionics 178 29
[6] Kato Y, Kawamoto K, Kanno R and Hirayama M 2012 Electrochemistry 80 749
[7] Takada K 2013 Acta Mater. 61 759
[8] Baba M, Kumagai N, Fujita N, Ohta K, Nishidate K, Komaba S, Groult H, Devilliers D and Kaplan B 2001 J. Power Sources 97-8 798
[9] Gwon H, Hong J, Kim H, Seo D H, Jeon S and Kang K 2014 Energy Environ. Sci. 7 538
[10] Zhang S S, Ervin M H, Xu K and Jow T R 2004 Electrochim. Acta 49 3339
[11] Qiu W, Yang Q, Ma X, Fu Y and Zong X 2004 Chinese Journal of Power Sources 28 440
[12] Ohta N, Takada K, Zhang L, Ma R, Osada M and Sasaki T 2006 Adv. Mater. 18 2226
[13] Bhalla A S, Guo R Y and Roy R 2000 Mater. Res. Innov. 4 3
[14] Inaguma Y, Chen L Q, Itoh M, Nakamura T, Uchida T, Ikuta H and Wakihara M 1993 Solid State Commun. 86 689
[15] Hagman L O and Kierkegaard P 1968 Acta Chem. Scand 22 1822
[16] Goodenough J B, Hong H Y P and Kafalas J A 1976 Mater. Res. Bull. 11 203
[17] Thangadurai V and Weppner W 2006 Ionics 12 81
[18] Subramanian M, Subramanian R and Clearfield A 1986 Solid State Ionics 18 562
[19] Casciola M, Costantino U, Merlini L, Andersen I K and Andersen E K 1988 Solid State Ionics 26 229
[20] Martinezjuarez A, Rojo J M, Iglesias J E and Sanz J 1995 Chem. Mater. 7 1857
[21] Aono H, Sugimoto E, Sadaoka Y, Imanaka N and Adachi G 1990 Solid State Ionics 40-1 38
[22] Morimoto H, Awano H, Terashima J, Shindo Y, Nakanishi S, Ito N, Ishikawa K and Tobishima S I 2013 J. Power Sources 240 636
[23] Xu X, Wen Z, Yang X and Chen L 2008 Mater. Res. Bull. 43 2334
[24] Huang Z, Yang J, Chen X, Tao Y, Liu D, Gao C, Long P and Xu X 2015 Energy Storage Science and Technology 4 1
[25] Xu X, Wen Z, Wu X, Yang X and Gu Z 2007 J. Am. Ceram. Soc. 90 2802
[26] Fu J 1997 Solid State Ionics 104 191
[27] Cruz A M, Ferreira E B and Rodrigues A C M 2009 J. Non-cryst. Solids. 355 2295
[28] Thokchom J S, Gupta N and Kumar B 2008 J. Electrochem. Soc. 155 A915
[29] Kasper H M 1969 Inorg. Chem. 8 1000
[30] Mazza D 1988 Mater. Lett. 7 205
[31] Cussen E J 2006 Chem. Commun. 412
[32] Thangadurai V, Kaack H and Weppner W J F 2003 J. Am. Ceram. Soc. 86 437
[33] Thangadurai V and Weppner W 2005 J. Am. Ceram. Soc. 88 411
[34] Thangadurai V and Weppner W 2005 Adv. Funct. Mater. 15 107
[35] Thangadurai V and Weppner W 2006 J. Solid State Chem. 179 974
[36] Murugan R, Thangadurai V and Weppner W 2007 Angew. Chem. Int. Ed. 46 7778
[37] Awaka J, Kijima N, Hayakawa H and Akimoto J 2009 J. Solid State Chem. 182 2046
[38] Geiger C A, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T and Weppner W 2011 Inorg. Chem. 50 1089
[39] Murugan R, Ramakumar S and Janani N 2011 Electrochem. Commun. 13 1373
[40] Ohta S, Kobayashi T and Asaoka T 2011 J. Power Sources 196 3342
[41] Allen J L, Wolfenstine J, Rangasamy E and Sakamoto J 2012 J. Power Sources 206 315
[42] Li Y, Han J T, Wang C A, Xie H and Goodenough J B 2012 J. Mater. Chem. 22 15357
[43] Deviannapoorani C, Dhivya L, Ramakumar S and Murugan R 2013 J. Power Sources 240 18
[44] Kennedy J H and Yang Y 1986 J. Electrochem. Soc. 133 2437
[45] Kennedy J H, Sahami S, Shea S W and Zhang Z M 1986 Solid State Ionics 18-9 368
[46] Deshpande V K, Pradel A and Ribes M 1988 Solid State Ionics 28 756
[47] Ahn B T and Huggins R A 1991 Solid State Ionics 46 237
[48] Kondo S, Takada K and Yamamura Y 1992 Solid State Ionics 53 1183
[49] Mizuno F, Hayashi A, Tadanaga K, Minami T and Tatsumisago M 2004 Solid State Ionics 175 699
[50] Morimoto H, Yamashita H, Tatsumisago M and Minami T 1999 J. Am. Ceram. Soc. 82 1352
[51] Kanno R and Maruyama M 2001 J. Electrochem. Soc. 148 A742
[52] Mizuno F, Hayashi A, Tadanaga K and Tatsumisago M 2005 Adv. Mater. 17 918
[53] Mizuno F, Hayashi A, Tadanaga K and Tatsumisago M 2006 Solid State Ionics 177 2721
[54] Hayashi A, Hama S, Minami T and Tatsumisago M 2003 Electrochem. Commun. 5 111
[55] Tatsumisago M, Hama S, Hayashi A, Morimoto H and Minami T 2002 Solid State Ionics 154 635
[56] Tachez M, Malugani J P, Mercier R and Robert G 1984 Solid State Ionics 14 181
[57] Liu Z, Fu W, Payzant E A, Yu X, Wu Z, Dudney N J, Kiggans J, Hong K, Rondinone A J and Liang C 2013 J. Am. Chem. Soc. 135 975
[58] Rangasamy E, Liu Z, Gobet M, Pilar K, Sahu G, Zhou W, Wu H, Greenbaum S and Liang C 2015 J. Am. Chem. Soc. 137 1384
[59] Shin B R, Nam Y J, Oh D Y, Kim D H, Kim J W and Jung Y S 2014 Electrochim. Acta 146 395
[60] Muramatsu H, Hayashi A, Ohtomo T, Hama S and Tatsumisago M 2011 Solid State Ionics 182 116
[61] Hayashi A, Muramatsu H, Ohtomo T, Hama S and Tatsumisago M 2014 J. Alloy. Compd. 591 247
[62] Xu X, Takada K, Fukuda K, Ohnishi T, Akatsuka K, Osada M, Bui Thi H, Kumagai K, Sekiguchi T and Sasaki T 2011 Energy Environ. Sci. 4 3509
[63] Xu X, Takada K, Watanabe K, Sakaguchi I, Akatsuka K, Hang B T, Ohnishi T and Sasaki T 2011 Chem. Mater. 23 3798
[64] Minami K, Hayashi A, Ujiie S and Tatsumisago M 2011 Solid State Ionics 192 122
[65] Seino Y, Ota T, Takada K, Hayashi A and Tatsumisago M 2014 Energy Environ. Sci. 7 627
[66] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K and Mitsui A 2011 Nat. Mater. 10 682
[67] Kuhn A, Duppel V and Lotsch B V 2013 Energy Environ. Sci. 6 3548
[68] Bron P, Johansson S, Zick K, auf der Guenne J S, Dehnen S and Roling B 2013 J. Am. Chem. Soc. 135 15694
[69] Tatsumisago M, Nagao M and Hayashi A 2013 Journal of Asian Ceramic Societies 1 17
[70] Sakuda A, Hayashi A, Ohtomo T, Hama S and Tatsumisago M 2010 Electrochemical and Solid-State Letters 13 A73
[71] Kitaura H, Hayashi A, Tadanaga K and Tatsumisago M 2010 Electrochim. Acta 55 8821
[72] Seino Y, Ota T and Takada K 2011 J. Power Sources 196 6488
[73] Iwasaki S, Hamanaka T, Yamakawa T, West W C, Yamamoto K, Motoyama M, Hirayama T and Iriyama Y 2014 J. Power Sources 272 1086
[74] Kitaura H, Hayashi A, Tadanaga K and Tatsumisago M 2010 J. Electrochem. Soc. 157 A407
[75] Yada C, Ohmori A, Ide K, Yamasaki H, Kato T, Saito T, Sagane F and Iriyama Y 2014 Adv. Energy Mater. 4 1301416
[76] Nagao M, Hayashi A, Tatsumisago M, Ichinose T, Ozaki T, Togawa Y and Mori S 2015 J. Power Sources 274 471
[77] Nagao M, Hayashi A and Tatsumisago M 2012 J. Mater. Chem. 22 10015
[78] Nagao M, Hayashi A and Tatsumisago M 2011 Electrochim. Acta 56 6055
[79] Hayashi A, Ohtsubo R and Tatsumisago M 2008 Solid State Ionics 179 1702
[80] Shin B R, Nam Y J, Kim J W, Lee Y G and Jung Y S 2014 Scientific Reports 4 5572
[81] Yersak T A, Stoldt C and Lee S H 2013 J. Electrochem. Soc. 160 A1009
[82] Yersak T A, Evans T, Whiteley J M, Son S B, Francisco B, Oh K H and Lee S H 2014 J. Electrochem. Soc. 161 A663
[83] Aso K, Kitaura H, Hayashi A and Tatsumisago M 2011 J. Mater. Chem. 21 2987
[84] Aso K, Sakuda A, Hayashi A and Tatsumisago M 2013 Acs Appl. Mater. Interfaces 5 686
[85] Haruyama J, Sodeyama K, Han L, Takada K and Tateyama Y 2014 Chem. Mater. 26 4248
[86] Sakuda A, Hayashi A and Tatsumisago M 2010 Chem. Mater. 22 949
[87] Sakuda A, Nakamoto N, Kitaura H, Hayashi A, Tadanaga K and Tatsumisago M 2012 J. Mater. Chem. 22 15247
[88] Sakuda A, Hayashi A, Ohtomo T, Hama S and Tatsumisago M 2011 J. Power Sources 196 6735
[89] Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M and Sasaki T 2007 Electrochem. Commun. 9 1486
[90] Sakuda A, Kitaura H, Hayashi A, Tadanaga K and Tatsumisago M 2009 J. Power Sources 189 527
[91] Woo J H, Trevey J E, Cavanagh A S, Choi Y S, Kim S C, George S M, Oh K H and Lee S H 2012 J. Electrochem. Soc. 159 A1120
[92] Teragawa S, Aso K, Tadanaga K, Hayashi A and Tatsumisago M 2014 J. Power Sources 248 939
[93] Teragawa S, Aso K, Tadanaga K, Hayashi A and Tatsumisago M 2014 J. Mater. Chem. A 2 5095
[94] Ohzuku T and Makimura Y 2001 Chem. Lett. 642
[95] Meng H, Huang B, Yin J, Yao X and Xu X 2015 Ionics 21 43
[96] Machida N, Kashiwagi J, Naito M and Shigematsu T 2012 Solid State Ionics 225 354
[97] Okada K, Machida N, Naito M, Shigematsu T, Ito S, Fujiki S, Nakano M and Aihara Y 2014 Solid State Ionics 255 120
[98] Tan G, Wu F, Lu J, Chen R, Li L and Amine K 2014 Nanoscale 6 10611
[99] Heidy V, Satoshi F, Aihara Y, Taku W, Youngsin P and Doo S 2014 J. Power Sources 269 396
[100] Uemura T, Goto K, Ogawa M and Harada K 2013 J. Power Sources 240 510
[101] Ito S, Fujiki S, Yamada T, Aihara Y, Park Y, Kim T Y, Baek S W, Lee J M, Doo S and Machida N 2014 J. Power Sources 248 943
[102] Kitaura H, Hayashi A, Tadanaga K and Tatsumisago M 2011 Solid State Ionics 192 304
[103] Lin Z and Liang C 2015 J. Mater. Chem. A 3 936
[104] Barghamadi M, Best A S, Bhatt A I, Hollenkamp A F, Musameh M, Rees R J and Rüther T 2014 Energy Environ. Sci. 7 3902
[105] Jung Y S, Oh D Y, Nam Y J and Park K H 2015 Israel J. Chem.
[106] Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F and Tatsumisago M 2008 J. Power Sources 183 422
[107] Nagata H and Chikusa Y 2014 J. Power Sources 264 206
[108] Takeuchi T, Kageyama H, Nakanishi K, Tabuchi M, Sakaebe H, Ohta T, Senoh H, Sakai T and Tatsumi K 2010 J. Electrochem. Soc. 157 A1196
[109] Lin Z, Liu Z, Dudney N J and Liang C 2013 ACS Nano 7 2829
[110] Nagao M, Kitaura H, Hayashi A and Tatsumisago M 2013 J. Electrochem. Soc. 160 A819
[111] Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T and Kuwabata S 2013 Phys. Chem. Chem. Phys. 15 18600
[112] Sahu G, Lin Z, Li J, Liu Z, Dudney N and Liang C 2014 Energy Environ. Sci. 7 1053
[113] Takahara H, Tabuchi M, Takeuchi T, Kageyama H, Ide J, Handa K, Kobayashi Y, Kurisu Y, Kondo S and Kanno R 2004 J. Electrochem. Soc. 151 A1309
[114] Takada K, Aotani N, Iwamoto K and Kondo S 1996 Solid State Ionics 86-8 877
[115] Jung Y S, Lee K T, Kim J H, Kwon J Y and Oh S M 2008 Adv. Funct. Mater. 18 3010
[116] Seino Y, Takada K, Kim B C, Zhang L Q, Ohta N, Wada H, Osada M and Sasaki T 2005 Solid State Ionics 176 2389
[117] Takeuchi T, Kageyama H, Nakanishi K, Ohta T, Sakuda A, Sakai T, Kobayashi H, Sakaebe H, Tatsumi K and Ogumi Z 2014 Solid State Ionics 262 138
[118] Takada K, Inada T, Kajiyama A, Sasaki H, Kondo S, Watanabe M, Murayama M and Kanno R 2003 Solid State Ionics 158 269
[119] Takada K, Nakano S, Inada T, Kajiyama A, Sasaki H, Kondo S and Watanabe M 2003 J. Electrochem. Soc. 150 A274
[120] Haik O, Leifer N, Samuk-Fromovich Z, Zinigrad E, Markovsky B, Larush L, Goffer Y, Goobes G and Aurbach D 2010 J. Electrochem. Soc. 157 A1099
[121] Trevey J E, Jung Y S and Lee S H 2011 Electrochim. Acta 56 4243
[122] Hayashi A and Tatsumisago M 2012 Electronic Materials Letters 8 199
[123] Kim J, Eom M, Noh S and Shin D 2013 J. Power Sources 244 476
[124] Trevey J E, Stoldt C R and Lee S H 2011 J. Electrochem. Soc. 158 A1282
[125] Hayashi A, Nishio Y, Kitaura H and Tatsumisago M 2008 Electrochem. Commun. 10 1860
[126] Kitaura H, Hayashi A, Ohtomo T, Hama S and Tatsumisago M 2011 J. Mater. Chem. 21 118
[127] Sakuda A, Kitaura H, Hayashi A, Tadanaga K and Tatsumisago M 2009 J. Electrochem. Soc. 156 A27
[128] Sakuda A, Kitaura H, Hayashi A, Tadanaga K and Tatsumisago M 2008 Electrochem. Solid State Lett. 11 A1
[129] Kim K H, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher C A J, Hirayama T, Murugan R and Ogumi Z 2011 J. Power Sources 196 764
[130] Okumura T, Nakatsutsumi T, Ina T, Orikasa Y, Arai H, Fukutsuka T, Iriyama Y, Uruga T, Tanida H, Uchimoto Y and Ogumi Z 2011 J. Mater. Chem. 21 10051
[131] Takada K 2013 Langmuir 29 7538
[132] Takada K, Ohta N and Tateyama Y 2015 Journal of Inorganic and Organometallic Polymers and Materials 25 205
[133] Takada K, Ohta N, Zhang L, Xu X, Bui Thi H, Ohnishi T, Osada M and Sasaki T 2012 Solid State Ionics 225 594
[134] Yamada H, Oga Y, Saruwatari I and Moriguchi I 2012 J. Electrochem. Soc. 159 A380
[135] Kishida K, Wada N, Yamaguchi Y, Tanaka K, Iriyama Y, Ogumi Z and Inui H 2007 in Solid-State Ionics-2006 (Traversa E, Armstrong T R, Masquelier C and Sadaoka Y Eds.) 2007 vol. 972 p. 251
[136] http://techon.nikkeibp.co.jp/english/NEWS_EN/20101122/187553/
[137] Tsuchiya H, Aihara Y, Fujiki S, Yamada T, Park Y and Doo S K 2014 225th ECS Meeting, May 11--15, 2014, Orlando USA, p. 107
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[3] Anionic redox reaction mechanism in Na-ion batteries
Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(9): 098801.
[4] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[5] Pair distribution function analysis: Fundamentals and application to battery materials
Xuelong Wang(王雪龙), Sha Tan(谭莎), Xiao-Qing Yang(杨晓青), Enyuan Hu(胡恩源). Chin. Phys. B, 2020, 29(2): 028802.
[6] Advanced characterization and calculation methods for rechargeable battery materials in multiple scales
Xin-Yan Li(李欣岩), Su-Ting Weng(翁素婷), Lin Gu(谷林). Chin. Phys. B, 2020, 29(2): 028801.
[7] High capacity sodium-rich layered oxide cathode for sodium-ion batteries
Gen-Cai Guo(郭根材), Changhao Wang(王长昊), Bang-Ming Ming(明帮铭), Si-Wei Luo(罗斯玮), Heng Su(苏恒), Bo-Ya Wang(王博亚), Ming Zhang(张铭), Hai-Jun Yu(尉海军), Ru-Zhi Wang(王如志). Chin. Phys. B, 2018, 27(11): 118801.
[8] Free-standing, curled and partially reduced graphene oxide network as sulfur host for high-performance lithium-sulfur batteries
Hui-Liang Chen(陈辉亮), Zhuo-Jian Xiao(肖卓建), Nan Zhang(张楠), Shi-Qi Xiao(肖仕奇), Xiao-Gang Xia(夏晓刚), Wei Xi(席薇), Yan-Chun Wang(王艳春), Wei-Ya Zhou(周维亚), Si-Shen Xie(解思深). Chin. Phys. B, 2018, 27(6): 068101.
[9] Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability
Xiqian Yu(禹习谦), Enyuan Hu(胡恩源), Seongmin Bak,Yong-Ning Zhou(周永宁), Xiao-Qing Yang(杨晓青). Chin. Phys. B, 2016, 25(1): 018205.
[10] Scientific and technological challenges toward application of lithium-sulfur batteries
Ya-Xia Yin(殷雅侠), Hu-Rong Yao(姚胡蓉), Yu-Guo Guo(郭玉国). Chin. Phys. B, 2016, 25(1): 018801.
[11] A superhigh discharge capacity induced by a synergetic effect between high-surface-area carbons and a carbon paper current collector in a lithium–oxygen battery
Luo Guang-Sheng (罗广生), Huang Shi-Ting (黄诗婷), Zhao Ning (赵宁), Cui Zhong-Hui (崔忠慧), Guo Xiang-Xin (郭向欣). Chin. Phys. B, 2015, 24(8): 088102.
[12] Analysis on the capacity degradation mechanism of a series lithium-ion power battery pack based on inconsistency of capacity
Wang Zhen-Po (王震坡), Liu Peng (刘鹏), Wang Li-Fang (王丽芳). Chin. Phys. B, 2013, 22(8): 088801.
[13] State of charge estimation of Li-ion batteries in electric vehicle based on radial-basis-function neural network
Bi Jun (毕军), Shao Sai (邵赛), Guan Wei (关伟), Wang Lu (王璐 ). Chin. Phys. B, 2012, 21(11): 118801.
No Suggested Reading articles found!