Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 054205    DOI: 10.1088/1674-1056/24/5/054205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Double optomechanical transparency with direct mechanical interaction

Li Ling-Chao (李凌超), Rao Shi (饶识), Xu Jun (徐俊), Hu Xiang-Ming (胡响明)
College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
Abstract  

We present a mechanism for double transparency in an optomechanical system. This mechanism is based on the coupling of a moving cavity mirror to a second mechanical oscillator. Due to the purely mechanical coupling and the radiation pressure, three pathways are established for excitations of the probe photons into the cavity photons. Destructive interference occurs at two different frequencies, leading to double transparency to the probe field. It is the coupling strength between the mechanical oscillators that determines the locations of the transparency windows. Moreover, the normal splitting appears for the generated Stokes field and the four-wave mixing process is inhibited on resonance.

Keywords:  mechanical interaction      double optomechanical transparency      quantum interference  
Received:  02 September 2014      Revised:  14 November 2014      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61178021, 11474118, and 11204099) and the National Basic Research Program of China (Grant No. 2012CB921604).

Corresponding Authors:  Hu Xiang-Ming     E-mail:  xmhu@phy.ccnu.edu.cn
About author:  42.50.Gy; 42.50.Wk; 42.50.Pq

Cite this article: 

Li Ling-Chao (李凌超), Rao Shi (饶识), Xu Jun (徐俊), Hu Xiang-Ming (胡响明) Double optomechanical transparency with direct mechanical interaction 2015 Chin. Phys. B 24 054205

[1] Harris S E 1997 Phys. Today 50 36
[2] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[3] Marangos J H 1998 J. Mod. Opt. 45 471
[4] Schmidt H and Imamoglu A 1996 Opt. Lett. 21 1936
[5] Wang H, Goorskey D and Xiao M 2001 Phys. Rev. Lett. 87 073601
[6] Han Y, Xiao J T, Liu Y H, Zhang C H, Wang H, Xiao M and Peng K C 2008 Phys. Rev. A 77 023824
[7] Wan R G, Kou J, Jiang Li, Jiang Y and Gao J Y 2011 Phys. Rev. A 83 033824
[8] Sun H, Gong S Q, Niu Y P, Jin S Q, Li R X and Xu Z Z 2006 Phys. Rev. B 74 155314
[9] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
[10] Kash M M, Sautenkov V A, Zibrov A S, Hollberg L, Welch G R, Lukin M D, Rostovtsev Y, Fry E S and Sully M O 1999 Phys. Rev. Lett. 82 5229
[11] Phillips D F, Fleischhauer A, Mair A and Walsworth R L 2001 Phys. Rev. Lett. 86 783
[12] Wu Y 2005 Phys. Rev. A 71 053820
[13] Liu Y C, Hu Y W, Wong C W, and Xiao Y F 2013 Chin. Phys. B 22 114213
[14] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[15] Weis S, Riviére R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[16] Lin Q, Rosenberg J, Chang D, Camacho R, Eichenfield M, Vahala K J and Painter O 2010 Nat. Photon. 4 236
[17] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds R W 2011 Nature 471 204
[18] Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69
[19] Huang S and Agarwal G S 2011 Phys. Rev. A 83 023823
[20] Han Y, Cheng J and Zhou L 2011 J. Phys. B 44 165505
[21] Xiong H, Si L G, Zheng A S, Yang X X and Wu Y 2012 Phys. Rev. A 86 013815
[22] Kronwald A and Marquardt F 2013 Phys. Rev. Lett. 111 133601
[23] Dong C H, Fiore V, Kuzyk M C and Wang H L 2013 Phys. Rev. A 87 055802
[24] Yan X B, Gu K H, Fu C. B, Cui C L and Wu J H 2014 Chin. Phys. B 23 114201
[25] Lukin M D, Yelin D F, Fleischhauer M and Scully M O 1999 Phys. Rev. A 60 3225
[26] Paspalakis E and Knight P L 2002 Phys. Rev. A 66 015802
[27] Wang C L, Li A J, Zhou X Y, Kang Z H, Yun J and Gao J Y 2008 Opt. Lett. 33 687
[28] Wu Y, Payne M G, Hagley E W and Deng L 2004 Opt. Lett. 29 2294
[29] Jin L H, Gong S Q, Niu Y P, Li R X and Jin S Q 2006 Phys. Lett. A 350 117
[30] Li Y F, Zhang X Y, Sun J F and Wang Y C 2001 Phys. Lett. A 291 215
[31] Hou B P, Wang S J, Yu W L and Sun W L 2006 Phys. Lett. A 352 462
[32] Shahidani S, Naderi M H and Soltanolkotabi M 2013 Phys. Rev. A 88 053813
[33] Huang S 2014 J. Phys. B 47 055504
[34] Wang H, Gu X, Liu Y X, Miranowicz A and Nori F 2014 Phys. Rev. A 90 023817
[35] Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825
[36] Law C K 1995 Phys. Rev. A 51 2537
[37] Genes C, Vitali D and Tombesi P 2008 New. J. Phys. 10 095009
[38] Gardiner C W and Zoller P 2000 Quantum Noise
[39] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer)
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[3] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[4] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[5] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[6] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[7] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[8] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[9] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[10] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[11] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[12] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[13] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[14] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[15] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
No Suggested Reading articles found!