Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 104209    DOI: 10.1088/1674-1056/23/10/104209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Resonant cavity-enhanced quantum dot field-effect transistor as a single-photon detector

Dong Yu (董宇)a, Wang Guang-Long (王广龙)a, Wang Hong-Pei (王红培)a, Ni Hai-Qiao (倪海桥)b, Chen Jian-Hui (陈建辉)a, Gao Feng-Qi (高凤岐)a, Qiao Zhong-Tao (乔中涛)a, Yang Xiao-Hong (杨晓红)b, Niu Zhi-Chuan (牛智川)b
a Laboratory of Nanotechnology and Microsystems, Mechanical Engineering College, Shijiazhuang 050000, China;
b Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  A resonant cavity-enhanced (RCE) quantum dot (QD) field-effect transistor (RCEQDFET) is designed for single-photon detection in this paper. Adding distributed Bragg reflection (DBR) mirrors to the single-photon detector (SPD), we improve the light absorption efficiency of the SPD. The effects of the reflectivity of the mirrors, the thickness and light absorption coefficient of the absorbing layer on the detector's light absorption efficiency are investigated, and the resonant cavity is determined by using the air/semiconductor interface as the mirror on the top. Through analyzing the relationship between the refractive index of AlxGa1-xAs and Al component, we choose AlAs/Al0.15Ga0.85As as the material of the mirror on the bottom. The pairs of AlAs/Al0.15Ga0.85As film are further determined to be 21 by calculating the reflectivity of the mirror. The detector is fabricated from semiconductor heterostructures grown by molecular beam epitaxy. The reflection spectrum, photoluminescence (PL) spectrum, photocurrent response, and channel current of the detector are tested and the results show that the RCEQDFET-SPD designed in this paper has better performances in photonic response and wavelength selection.
Keywords:  single-photon detector      quantum dot field-effect transistor      resonant cavity enhanced  
Received:  01 November 2013      Revised:  10 February 2014      Accepted manuscript online: 
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  85.30.Tv (Field effect devices)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61274125) and the Natural Science Foundation of Beijing, China (Grant No. 11DB1262).
Corresponding Authors:  Dong Yu     E-mail:  jushangzhilei@foxmail.com
About author:  42.60.Da; 85.30.Tv; 85.60.Gz

Cite this article: 

Dong Yu (董宇), Wang Guang-Long (王广龙), Wang Hong-Pei (王红培), Ni Hai-Qiao (倪海桥), Chen Jian-Hui (陈建辉), Gao Feng-Qi (高凤岐), Qiao Zhong-Tao (乔中涛), Yang Xiao-Hong (杨晓红), Niu Zhi-Chuan (牛智川) Resonant cavity-enhanced quantum dot field-effect transistor as a single-photon detector 2014 Chin. Phys. B 23 104209

[1]Liu J, Wang Q, Kuang L M and Zeng H S 2010 Chin. Phys. B 19 030313
[2]Wang T Y, Wen Q Y and Zhu F C 2009 Chin. Phys. B 18 3189
[3]Baudot J, Dulinski W, Winter M, Barbier R, Chabanat E, Depasse P and Estre N 2009 Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 604 111
[4]Pan Z L, Chen L and Chen G J 2013 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interactions with Materials and Atoms 307 210
[5]Bouzid A, Park J B, Kim S M, Kwak S and Moon S 2011 Curr. Appl. Phys. 11 903
[6]Vilella E, Alonso O, Montiel A, Vilá A and Diéguez A 2013 Sensors and Actuators A: Physical 201 342
[7]Gys T 2008 Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 595 136
[8]Acerbi F, Tosi A and Zappa F 2013 Sensors and Actuators A: Physical 201 207
[9]Lunghia T, Barreiroa C, Guinnarda O, Houlmanna R, Jiangb X, Itzlerb M A and Zbindena H 2012 J. Mod. Opt. 59 1481
[10]McCarthy A, Krichel N J, Gemmell N R, Ren X, Tanner M G, Dorenbos S N, Zwiller V, Hadfield R H and Buller G S 2013 Opt. Express 21 8904
[11]McCarthy A, Ren X, Frera A D, Gemmell N R, Krichel N J, Scarcella C, Ruggeri A, Tosi A and Buller G S 2013 Opt. Express 21 22098
[12]Nambu Y, Takahashi S, Yoshino K, Tanaka A, Fujiwara M, Sasaki M, Tajima A, Yorozu S and Tomita A 2011 Opt. Express 19 20531
[13]Warburton R E, Intermite G, Myronov M, Allred P, Leadley D R, Gallacher K, Paul D J, Pilgrim N J, Lever L J M, Ikonic Z, Kelsall R W, Huante-Ceron E, Knights A P and Buller G S 2013 Electron. Dev. 60 3807
[14]Liu Y, Wu Q L, Han Z F, Dai Y M and Guo G C 2010 Chin. Phys. B 19 080308
[15]Wang J, Wei Z J, Wang G, Guo L, Wang J D, Zhang Z M, Guo J P, Guo B H and Liu S H 2013 Acta Phys. Sin. 62 014203 (in Chinese)
[16]Alexeev M, Birsa R, Bradamante F, et al. 2010 Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 623 129
[17]Rosenberg D, Kerman A J, Molnar R J and Dauler E A 2013 Opt. Express 21 1440
[18]Natarajan C M, Zhang L, Coldenstrodt-Ronge H, Donati G, Dorenbos S N, Zwiller V, Walmsley I A and Hadfield R 2013 Opt. Express 21 893
[19]Shibata H, Shimizu K, Takesue H and Tokura Y 2013 Appl. Phys. Express 6 072801
[20]Hu X, Zhong T, White J E, Dauler E A, Najafi F, Herder C H, Wong F N C and Berggren K 2009 Opt. Lett. 34 3607
[21]Zhang L B, Kang L, Chen J, Zhao Q Y, Jia T, Xu W W, Cao C H, Jin B B and Wu P H 2011 Acta Phys. Sin. 60 038501 (in Chinese)
[22]Miki S, Yamashita T, Terai H, Makise K, Fujiwara M, Sasaki M and Wang Z 2012 Phys. Procedia 36 77
[23]Li Y Q, Wang X D, Xu X N, Liu W, Yang F H and Zeng Y P 2011 Physica E: Low-dimensional Systems and Nanostructures 44 686
[24]Tabe M, Udhiarto A, Moraru D and Mizuno T 2011 Phys. Status Solidi A 208 646
[25]Shields A J, O'Sullivan M P, Farrer I, Ritchie D A and Hogg R A 2000 Appl. Phys. Lett. 76 3673
[26]Rowe M A, Salley G M, Gansen E J, Etzel S M, Nam S W and Mirin R P 2010 J. Appl. Phys. 107 063110
[27]Rowe M A, Gansen E J, Greene M, Hadfield R H and Harvey T E 2006 Appl. Phys. Lett. 89 253505
[28]Dixon A R, Yuan Z L, Dynes J F, Sharpe A W and Shields A J 2008 Opt. Express 16 18790
[29]Gansen E J, Rowe M A, Greene M B, Rosenberg G D, Harvey T E, Su M Y, Hardfield R H, Nam S W and Mirin R P 2007 Nat. Photon. 1 585
[30]Wang H P, Wang G L, Ni H Q, Xu Y Q, Niu Z C and Gao F Q 2013 Acta Phys. Sin. 62 194205 (in Chinese)
[31]Guo J C, Zuo Y H, Zhang Y, Ding W C, Cheng B W, Yu J Z and Wang Q M 2009 Chin. Phys. B 18 2223
[32]Chen C, Zhao L J, Qiu J F, Liu Y, Wang W and Lou C Y 2012 Chin. Phys. B 21 094208
[33]Lee C T and Ho H W 2013 Solid-State Electron. 89 153
[34]Dutta H S and Das N R 2012 Procedia Technology 4 9
[35]Felder F, Fill M, Rahim M, Zogg H, Quack N, Blunier S and Dual J 2010 Phys. Procedia 3 1127
[36]Schulz W M, Eichfelder M, Reischle M, Kessler C, Robbach R, Jetter M and Michler P 2011 J. Cryst. Growth 315 127
[37]Montes M, Guzmán A, Trampert A and Hierro A 2010 Solid-State Electron. 54 492
[38]Zhou J P, Wang M and Han D F 2009 Int. J. Light Electron Opt. 120 987
[39]Kosaka H, Rao D S, Robinson H D, Bandaru P, Makita K and Yablonovitch E 2003 Phys. Rev. B 67 045104
[40]Gansen E J, Rowe M A, Greene M B, Rosenberg D, Harvey T E, Su M Y, Hadfield R H, Nam S W and Mirin R P 2007 IEEE J. Selec. Topics Quantum Electron. 13 967
[1] Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model
Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2021, 30(9): 098501.
[2] Wavelength dependence of intrinsic detection efficiency of NbN superconducting nanowire single-photon detector
Yong Wang(王勇), Hao Li(李浩), Li-Xing You(尤立星), Chao-Lin Lv(吕超林), He-Qing Wang(王河清), Xing-Yu Zhang(张兴雨), Wei-Jun Zhang(张伟君), Hui Zhou(周慧), Lu Zhang(张露), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇). Chin. Phys. B, 2019, 28(7): 078502.
[3] Controlling a sine wave gating single-photon detector by exploiting its filtering loophole
Lin-Xi Feng(冯林溪), Mu-Sheng Jiang(江木生), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋). Chin. Phys. B, 2018, 27(8): 080305.
[4] Bias-dependent timing jitter of 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode
Ge Zhu(朱阁), Fu Zheng(郑福), Chao Wang(王超), Zhibin Sun(孙志斌), Guangjie Zhai(翟光杰), Qing Zhao(赵清). Chin. Phys. B, 2016, 25(11): 118505.
[5] Countermeasure against probabilistic blinding attack in practical quantum key distribution systems
Qian Yong-Jun (钱泳君), Li Hong-Wei (李宏伟), He De-Yong (何德勇), Yin Zhen-Qiang (银振强), Zhang Chun-Mei (张春梅), Chen Wei (陈巍), Wang Shuang (王双), Han Zheng-Fu (韩正甫). Chin. Phys. B, 2015, 24(9): 090305.
[6] Performance of superconducting nanowire single-photon detector with the fan coupling antenna array
Wang Yu-Jue (王玉珏), Ding Tian (丁天), Ma Hai-Qiang (马海强), Jiao Rong-Zhen (焦荣珍). Chin. Phys. B, 2014, 23(6): 060308.
No Suggested Reading articles found!