Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 114203    DOI: 10.1088/1674-1056/22/11/114203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Slow light via four-wave mixing in a hot rubidium vapour

Ding Dong-Sheng (丁冬生), Zhou Zhi-Yuan (周志远), Shi Bao-Sen (史保森)
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
Abstract  In this work, we report on an off-resonant four-wave mixing experiment via a ladder-type configuration in a hot rubidium atomic vapour. We find for the first time, to the best of our knowledge, that the generated light is delayed compared with the reference. At the same time, the seeded signal beam is also delayed, though the delay time is not as so large as the one that the generated light has. Both delayed times can be adjusted experimentally by controlling the two-photon detuning. The experimental results are in good agreement with our theoretical predictions. Our results may be important for storing telecom-band photons.
Keywords:  slowed light      four-wave mixing  
Received:  06 January 2013      Revised:  24 March 2013      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.-t (Photoionization and excitation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874171 and 11174271), the National Basic Research Program of China (Grant No. 2011CB00200), the Innovation Fund of the Chinese Academy of Sciences, China, and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-07-0791).
Corresponding Authors:  Shi Bao-Sen     E-mail:  drshi@ustc.edu.cn

Cite this article: 

Ding Dong-Sheng (丁冬生), Zhou Zhi-Yuan (周志远), Shi Bao-Sen (史保森) Slow light via four-wave mixing in a hot rubidium vapour 2013 Chin. Phys. B 22 114203

[1] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Phys. Rev. Lett. 55 2409
[2] Kuzmich A, Bowen W P, Booze A D, Boca A, Chou C W, Duan L M and Kimble H J 2003 Nature 423 731
[3] Balic V, Braje D A, Kolchin P, Yin G Y and Harris S E 2005 Phys. Rev. Lett. 94 183601
[4] Du S W, Kolchin P, Bethangady C, Yin G Y and Harris S E 2008 Phys. Rev. Lett. 100 183603
[5] Chen Q F, Shi B S, Zhang Y S, Feng M and Guo G C 2008 Opt. Express 16 21708
[6] Lu X S, Chen Q F, Shi B S and Guo G C 2009 Chin. Phys. Lett. 26 064204
[7] McCormick C F, Boyer V, Arimondo E and Lett P D 2007 Opt. Lett. 32 178
[8] Jiang W, Chen Q F, Zhang Y S and Guo G C 2006 Phys. Rev. A 74 043811
[9] Boyer V, McCormick C F, Arimondo E and Lett P D 2007 Phys. Rev. Lett. 99 143601
[10] Camacho R M, Vudyasetu P K and Howell J C 2009 Nat. Photonics 3 103
[11] Hsu P S, Patnaik A K and Weich G R 2008 Opt. Lett. 33 381
[12] Hsu P S, Patnaik A K and Weich G R 2008 J. Mod. Opt. 55 3109
[13] Hsu P S, Weich G R, Gord J R and Patnaik A K 2011 Phys. Rev. A 83 053819
[14] Willis R T, Becerra F E, Orozco L A and Rolston S L 2009 Phys. Rev. A 79 033814
[15] Chaneli’ere T, Matsukevich D N, Jenkins S D, Kennedy T A B, Chapman M S and Kuzmich A 2006 Phys. Rev. Lett. 96 093604
[16] Ding D S, Zhou Z Y, Shi B S, Zou X B and Guo G C 2012 Phys. Rev. A 85 053815
[17] Ding D S, Zhou Z Y, Shi B S, Zou X B and Guo G C 2012 Opt. Express 20 11433
[18] Li Y Y, Li L, Bai J T, Li C B, Zhang Y P and Hou X 2010 Chin. Phys. Lett. 27 044203
[19] Sun J, Mi X, Yu Z H, Jiang Q, Zuo Z C, Wang Y B, Wu L A and Fu P M 2004 Chin. Phys. Lett. 21 306
[20] Wu Y and Yang X X 2003 Chin. Phys. Lett. 20 1736
[21] Nielsen T R, Lavrinenko A and Mork J 2009 Appl. Phys. Lett. 94 113111
[22] Patnaik A K, Roy S and Gord J R 2011 Opt. Lett. 36 3272
[23] Zhang Y P, Brown A W and Xiao M 2006 Phys. Rev. A 74 053813
[24] Kumar M A and Singh S 2009 Phys. Rev. A 79 063821
[25] Lukin M D, Hemmer P R, Scully M O 2000 Adv. At. Mol. Opt. Phys. 42 347
[26] Jen H H and Kennedy T A B 2010 Phys. Rev. A 82 023815
[1] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[2] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[3] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[4] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[5] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[6] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[7] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[8] Enhancement of multiple four-wave mixing via cascaded fibers with discrete dispersion decreasing
Jia-Bao Li(李嘉宝), Ling-Jie Kong(孔令杰), Xiao-Sheng Xiao(肖晓晟), Chang-Xi Yang(杨昌喜). Chin. Phys. B, 2017, 26(6): 064205.
[9] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[10] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[11] Observation of multi-Raman gain resonances in rubidium vapor
Jun Liu(刘俊), Dong Wei(卫栋), Jin-wen Wang(王金文), Ya Yu(余娅), Hua-jie Hu(胡华杰), Hong Gao(高宏), Fu-li Li(李福利). Chin. Phys. B, 2016, 25(11): 114204.
[12] Beam propagation method for wide-fieldnonlinear wave mixing microscope
Lv Yong-Gang (吕永钢), Ji Zi-Heng (纪子衡), Yu Wen-Tao (于文韬), Shi Ke-Bin (施可彬). Chin. Phys. B, 2015, 24(9): 094211.
[13] Image information transfer via electromagnetically induced transparency-based slow light
Wang Xiao-Xiao (王潇潇), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Li Ai-Jun (李爱军), Chen Yi (陈怡), Zhang Xiao-Jun (张晓军), Kang Zhi-Hui (康智慧), Wang Lei (王磊), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2015, 24(7): 074204.
[14] Controllable optical mirror of cesium atoms with four-wave mixing
Zhou Hai-Tao (周海涛), Wang Dan (王丹), Guo Miao-Jun (郭苗军), Gao Jiang-Rui (郜江瑞), Zhang Jun-Xiang (张俊香). Chin. Phys. B, 2014, 23(9): 093204.
[15] Experimental study on the Stokes effect in disordered birefringent microstructure fibers
Zhao Yuan-Yuan (赵原源), Zhou Gui-Yao (周桂耀), Li Jian-She (李建设), Zhang Zhi-Yuan (张志远), Han Ying (韩颖). Chin. Phys. B, 2014, 23(8): 084208.
No Suggested Reading articles found!