Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 058101    DOI: 10.1088/1674-1056/22/5/058101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhancement of microwave absorption of nanocomposite BaFe12O19/α-Fe microfibers

Yang Xin-Chun (杨新春)a, Liu Rui-Jiang (刘瑞江)b, Shen Xiang-Qian (沈湘黔)a, Song Fu-Zhan (宋福展)a, Jing Mao-Xiang (景茂祥)a, Meng Xian-Feng (孟献丰)a
a Institute of Advanced Materials, Jiangsu University, Zhenjiang 212013, China;
b School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
Abstract  Nanocomposite BaFe12O19/α-Fe microfibers with diameters of about 1-5 μm are prepared by the organic gel-thermal selective reduction process. The binary phase of BaFe12O19 and α-Fe is formed after reduction of the precursor BaFe12O19/α-Fe2O3microfibers at 350 ℃ for 1 h. These nanocomposite microfibers are fabricated from α-Fe (16-22 nm in diameter) and BaFe12O19 particles (36-42 nm in diameter) and basically exhibit a single-phase-like magnetization behaviour, with a high saturation magnetization and coercive force arising from the exchange-coupling interactions of soft α-Fe and hard BaFe12O19. The microwave absorption characteristics in a 2-18 GHz frequency range of the nanocomposite BaFe12O19/α-Fe microfibers are mainly influenced by their mass ratio of α-Fe/BaFe12O19 and specimen thickness. It is found that the nanocomposite BaFe12O19/α-Fe microfibers with a mass ratio of 1:6 and specimen thickness of 2.5 mm show an optimal reflection loss (RL) of -29.7 dB at 13.5 GHz and the bandwidth with RL exceeding -10 dB covers the whole Ku-band (12.4-18.0 GHz). This enhancement of microwave absorption can be attributed to the heterotructure of soft, nano, conducting α-Fe particles embedded in hard, nano, semiconducting barium ferrite, which improves the dipolar polarization, interfacial polarization, exchange-coupling interaction, and anisotropic energy in the nanocomposite BaFe12O19/α-Fe microfibers.
Keywords:  barium ferrite      nanocomposites      microfibers      microwave absorber  
Received:  26 August 2012      Revised:  10 October 2012      Accepted manuscript online: 
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
  75.50-y  
  73.40.Sx (Metal-semiconductor-metal structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51274106 and 51202091), the Natural Science Foundation of Higher Education of Jiangsu Province, China (Grant No. 12KJA430001), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103227110006), the Science and Technology Support Program of Jiangsu Province, China (Grant No. BE2012143), and the Postgraduate Cultivation and Innovation Project of Jiangsu Province, China (Grant No. CXZZ11_0557).
Corresponding Authors:  Shen Xiang-Qian     E-mail:  shenxq@ujs.edu.cn

Cite this article: 

Yang Xin-Chun (杨新春), Liu Rui-Jiang (刘瑞江), Shen Xiang-Qian (沈湘黔), Song Fu-Zhan (宋福展), Jing Mao-Xiang (景茂祥), Meng Xian-Feng (孟献丰) Enhancement of microwave absorption of nanocomposite BaFe12O19/α-Fe microfibers 2013 Chin. Phys. B 22 058101

[1] Li G, Xie T S, Yang S L, Jin J H and Jiang J M 2012 J. Phys. Chem. C 116 9196
[2] Cao J, Fu W Y, Yang H B, Yu Q J, Zhang Y Y, Liu S K, Sun P, Zhou X M, Leng Y, Wang S M, Liu B B and Zou G T 2009 J. Phys. Chem. B 113 4642
[3] Watts C M, Liu X L and Padilla W J 2012 Adv Mater. 24 98
[4] Sun G B, Dong B X, Cao M H, Wei B Q and Hu C W 2011 Chem. Mater. 23 1587
[5] García-Miquel H and Kurlyandskaya G V 2008 Chin. Phys. B 17 1340
[6] Han M G, Ou Y, Liang D F and Deng L J 2009 Chin. Phys. B 18 1261
[7] Liu J C, Liu C Y, Wu C Y and Hsu H Y 2004 Microw Opt. Technol. Lett. 41 323
[8] Feng Y B, Qiu T and Shen C Y 2007 J. Magn. Magn. Mater. 318 8
[9] Wei C Y, Shen X Q and Song F Z 2012 Chin. Phys. B 21 028101
[10] Song F Z, Shen X Q, Liu M Q and Xiang J 2010 J. Colloid Interf. Sci. 354 413
[11] Tyagi S, Verma P, Baskey H B, Agarwala R C, Agarwala V and Shami T C 2012 Ceram Int. 38 4561
[12] Liu Z, Chen R J, Li D and Yan A R 2010 Chin. Phys. B 19 067504
[13] Liu J R, Itoh M and Machida K I 2006 Appl. Phys. Lett. 88 062503
[14] Tang X and Hu K A 2007 Mater. Sci. Eng. B 139 119
[15] Che R C, Peng L M, Duan X F, Chen Q and Liang X L 2004 Adv Mater. 16 401
[16] Lu H P, Han M G, Cai L and Deng L J 2011 Chin. Phys. B 20 060701
[17] Chiscan O, Dumitru I, Tura V, Chiriac H and Stancu A 2011 IEEE Trans. Magn. 47 4511
[18] Peng Z H, Gong X Y, Peng Y F, Guo Y C and Ning Y T 2012 Chin. Phys. B 21 078102
[19] Chiscan O, Dumitru I, Tura V and Stancu A 2012 J. Mater. Sci. 47 2322
[20] Li C J, Wang B and Wang J N 2012 J. Magn. Magn. Mater. 324 1305
[21] Shen X Q, Song F Z, Xiang J, Liu M Q, Zhu Y W and Wang Y D 2012 J. Am. Ceram. Soc. 95 3863
[22] Graeser M, Bognitzki M, Massa W, Pietzonka C, Greiner A and Wendorff J H 2007 Adv. Mater. 19 4244
[23] Yan L, Wang J B, Han X H, Ren Y, Liu Q F and Li F S 2010 Nanotechnology 21 095708
[24] Bobzin K, Schlaefer T, Bégard M, Bruehl M, Bolelli G, Lusvarghi L, Lisjak D, Hujanen A, Lintunen P, Kanerva U, Varis T and Pasquale M 2010 Surf. Coat. Technol. 205 1015
[25] Li J, Zhang H W, Li Y X, Liu Y L and Ma Y B 2012 Chin. Phys. B 21 017501
[26] Yang X C, Liu R J, Shen X Q and Song F Z 2012 J. Sol-Gel. Sci. Technol. 63 8
[27] Musal H M, Hahn J and Hahn H T 1989 IEEE Trans. Magn. 25 3851
[28] Roy D, Shivakumara C and Anil Kumar P S 2009 J. Magn. Magn. Mater. 321 L11
[29] Song F Z, Shen X Q, Liu M Q and Xiang J 2011 Mater. Chem. Phys. 126 791
[30] Tyagi S, Baskey H B, Agarwala R C, Agarwala V and Shami T C 2011 Ceram Int. 37 2631
[31] Bo X X, Li G S, Qiu X Q, Xue Y F and Li L P 2007 J. Phys. Chem. Solids 180 1038
[32] Moon K W, Cho S G, Choa Y H, Kim K H and Kim J 2007 Phys. Stat. Sol. (a) 204 4141
[33] Ohlan A, Singh K, Chandra A and Dhawan S K 2010 ACS Appl. Mater. Inter. 2 927
[34] Li J G, Huang J J, Qin Y and Ma F 2007 Mater. Sci. Eng. B 138 199
[35] Liu X G, Li B, Geng D Y, Cui W B, Yang F, Xie Z G, Kang D J and Zhang Z D 2009 Carbon 47 470
[36] Liu W, Zhong W, Jiang H Y, Tang N J, Wu X L and Du W Y 2005 Eur. Phys. J. B 46 471
[37] Maeda T, Sugimoto S, Kagotani T, Tezuka N and Inomata K 2004 J. Magn. Magn. Mater. 281 195
[38] Chen N, Mu G H, Pan X F, Gan K K and Gu M Y 2007 Mater. Sci. Eng. B 139 256
[39] Song F Z, Shen X Q, Liu M Q and Xiang J 2012 J. Solid. State. Chem. 185 31
[40] Tang X, Zhao B Y, Tian Q and Hu K A 2006 J. Phys. Chem. Solids 67 2442
[41] Xu P, Han X J, Jiang J J, Wang X H, Li X D and Wen A H 2007 J. Phys. Chem. C 111 12603
[1] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[2] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[3] Silica encapsulated ZnO quantum dot-phosphor nanocomposites: Sol-gel preparation and white light-emitting device application
Ya-Chuan Liang(梁亚川), Kai-Kai Liu(刘凯凯), Ying-Jie Lu(卢英杰), Qi Zhao(赵琪), Chong-Xin Shan(单崇新). Chin. Phys. B, 2018, 27(7): 078102.
[4] Graphene-enhanced thermoelectric properties of p-type skutterudites
Dandan Qin(秦丹丹), Yuan Liu(刘嫄), Xianfu Meng(孟宪福), Bo Cui(崔博), Yaya Qi(祁亚亚), Wei Cai(蔡伟), Jiehe Sui(隋解和). Chin. Phys. B, 2018, 27(4): 048402.
[5] Design and optimization of carbon nanotube/polymer actuator by using finite element analysis
Wei Zhang(张薇), Luzhuo Chen(陈鲁倬), Jianmin Zhang(张健敏), Zhigao Huang(黄志高). Chin. Phys. B, 2017, 26(4): 048801.
[6] Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation
Chao Li(李超), Jun-Jie Sun(孙俊杰), Duo Chen(陈铎), Guang-Bing Han(韩广兵), Shu-Yun Yu(于淑云), Shi-Shou Kang(康仕寿), Liang-Mo Mei(梅良模). Chin. Phys. B, 2016, 25(8): 088201.
[7] Perpendicularly oriented barium ferrite thin films with low microwave loss, prepared by pulsed laser deposition
Da-Ming Chen(陈大明), Yuan-Xun Li(李元勋), Li-Kun Han(韩莉坤), Chao Long(龙超), Huai-Wu Zhang(张怀武). Chin. Phys. B, 2016, 25(6): 068403.
[8] Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites
Hai-Yang Song(宋海洋) and Yu-Long Li(李玉龙). Chin. Phys. B, 2016, 25(2): 026802.
[9] Tunable wideband absorber based on resistively loaded lossy high-impedance surface
Dang Ke-Zheng (党可征), Shi Jia-Ming (时家明), Wang Jia-Chun (汪家春), Lin Zhi-Dan (林志丹), Wang Qi-Chao (王启超). Chin. Phys. B, 2015, 24(10): 104104.
[10] Fabrication and electrochemical performance of graphene-ZnO nanocomposites
Li Zhen-Peng (李振鹏), Men Chuan-Ling (门传玲), Wang Wan (王婉), Cao Jun (曹军). Chin. Phys. B, 2014, 23(5): 057205.
[11] Preparation of multi-walled carbon nanotube-Fe composites and their application as light weight and broadband electromagnetic wave absorbers
Liu Yuan (刘渊), Liu Xiang-Xuan (刘祥萱), Wang Xuan-Jun (王煊军). Chin. Phys. B, 2014, 23(11): 117705.
[12] Optical and magnetic properties of porous anodic alumina films embedded with Co nanowires
Zhang Jing-Jing (张敬晶), Li Zi-Yue (李子岳), Zhang Hui-Min (张惠敏), Hou Xue (侯雪), Sun Hui-Yuan (孙会元). Chin. Phys. B, 2013, 22(8): 087805.
[13] Fabrication and performance optimization of Mn–Zn ferrite/EP composites as microwave absorbing materials
Wang Wen-Jie (王文杰), Zang Chong-Guang (臧充光), Jiao Qing-Jie (焦清介). Chin. Phys. B, 2013, 22(12): 128101.
[14] Effect of shear on the symmetric diblock copolymer/nanorod mixture: A dissipative particle dynamics study
He Lin-Li (何林李), Zhang Rui-Fen (张瑞芬), Ji Yong-Yun (季永运 ). Chin. Phys. B, 2012, 21(8): 088301.
[15] Texture and self-biased property of an oriented M-type barium ferrite thick film by tape casting
Chen Da-Ming(陈大明), Liu Ying-Li(刘颖力), Li Yuan-Xun(李元勋), Yang Kai(杨楷), and Zhang Huai-Wu(张怀武) . Chin. Phys. B, 2012, 21(6): 067502.
No Suggested Reading articles found!