Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 104209    DOI: 10.1088/1674-1056/21/10/104209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Removing paint from a metal substrate using a flattened top laser

Shi Shu-Dong (施曙东)a d, Li Wei (李伟)a, Du Peng (杜鹏)a, Wang Meng (王萌)a, Song Feng (宋峰)a, Liu Shu-Jing (刘淑静)b, Chen Nian-Jiang (陈念江)c, Zhao Hong (赵鸿)c, Yang Wen-Shi (杨文是)c
a School of Physics, Nankai University, Tianjin 300071, China;
b Department of Physics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
c Science and Technology on Solid-State Laser Laboratory, Beijing 100015, China;
d Electricity Department, Patent Office, Beijing 100088, China
Abstract  In this paper, we investigate laser cleaning using a flattened top laser to remove paint coating from a metal substrate. Under the irradiation of a flattened top laser, the coating paint of the metal substrate can be removed efficiently by laser induced ablation, stress, and displacement force. The temperature distribution, stress, and displacement are calculated in the coating layer and substrate using finite element analysis. The effects of a Gaussian laser and a flattened top laser and the results of different diameters of laser spot are compared. The investigation shows that the flattened top laser can reduce the substrate damage and enhance the cleaning efficiency. This method meets the need of large area industrial cleaning applications by optimizing the flattened top laser parameters.
Keywords:  laser cleaning      laser ablation      finite element method      flattened top laser beam  
Received:  22 March 2012      Revised:  08 April 2012      Accepted manuscript online: 
PACS:  42.62.-b (Laser applications)  
  52.38.Mf (Laser ablation)  
  79.20.Eb (Laser ablation)  
Fund: Project supported by the Industrial Technology Development Program, China (Grant No. A1120110023) and the National Key Laboratory of Solid-state-laser Technology, China (Grant No. 9140C040201100C04).
Corresponding Authors:  Song Feng     E-mail:  fsong@nankai.edu.cn

Cite this article: 

Shi Shu-Dong (施曙东), Li Wei (李伟), Du Peng (杜鹏), Wang Meng (王萌), Song Feng (宋峰), Liu Shu-Jing (刘淑静), Chen Nian-Jiang (陈念江), Zhao Hong (赵鸿), Yang Wen-Shi (杨文是) Removing paint from a metal substrate using a flattened top laser 2012 Chin. Phys. B 21 104209

[1] Song F, Liu S J and Yan B X 2004 Cleaning World 20 43 (in Chinese)
[2] Fourrier T, Schrems G, Mühlberger T, Heitz J, Arnold N, Bäuerle D, Mosbacher M, Boneberg J and Leiderer P 2001 Appl. Phys. A 72 1
[3] Lu Y F, Song W D, Lukyanchuk B S, Hong M H and Zheng W Y 2000 Mater. Res. Soc. Symp. 617 (Singapore: Materials Research Society)
[4] Zhou G L and Zhao H X 2003 Special Purpose Rubber Products 24 39 (in Chinese)
[5] Mann K, Wolff-Rottke B and Muller F 1996 Appl. Surf. Sci. 96 463
[6] Lu Y F, Song W D, Hong M H, Chong T C and Low T S 1995 Mater Res. Soc. Symp. Proc. 397 329
[7] Siano S and Salimbeni R 2010 Acc. Chem. Res. 43 739
[8] Zapka W, Ziemlich W, Leung W P and Tam A C 1993 Micro-electron. Eng. 20 17138
[9] Hills M M 1995 Vac. Sci. Technol. A 13 11830
[10] Lmen K, Lee S J and Allen S D 1991 Appl. Phys. Lett. 58 20347
[11] Tam A C, Leung W P, Zapka W and Ziemlich W 1992 J. Appl. Phys. 71 3515
[12] Chen G X, Kwee T J, Tan K P, Choo Y S and Hong M H 2010 Appl. Phys. A 101 249
[13] Daurelio G, Chita G and Cinquepalmi M 1999 Appl. Phys. A [suppl.] 69 S543
[14] Schweizer G and Werner L 1994 Proc. SPIE 2502 57
[15] Brygo F, Dutouquet C, Guern F Le, Oltra R, Semerok A and Weulersse J M 2006 Appl. Surf. Sci. 252 2131
[16] Xu B Q, Shen Z H, Lu J, Ni X W and Zhang S Y 2003 Heat and Mass Transfer 46 4963
[17] Pu J X 1999 Laser Technology 23 42 (in Chinese)
[18] William B J Z 2007 COMSOL Multiphysics Finite Element Method: Model and Analysis (Beijing: China Communications Press) (in Chinese)
[1] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[2] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[3] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[4] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[5] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[6] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[7] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[8] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[9] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[10] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[11] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[12] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[13] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[14] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[15] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
No Suggested Reading articles found!