Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 090701    DOI: 10.1088/1674-1056/20/9/090701
GENERAL Prev   Next  

High birefringence, low loss terahertz photonic crystal fibres with zero dispersion at 0.3 THz

Yin Guo-Bing(尹国冰), Li Shu-Guang(李曙光), Wang Xiao-Yan(王晓琰), and Liu Shuo(刘硕)
Key Laboratory of Metastable Materials Science and Technology, College of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  A terahertz photonic crystal fibre (THz-PCF) is designed for terahertz wave propagation. The dispersion property and model birefringence are studied by employing the finite element method. The simulation result reveals the changing patten of dispersion parameter versus the geometry. The influence of the large frequency band of terahertz on birefringence is also discussed. The design of low loss, high birefringence THz-PCFs with zero dispersion frequency at 0.3 THz is presented.
Keywords:  terahertz      zero dispersion      birefringence      photonic crystal fibres  
Received:  04 January 2011      Revised:  12 May 2011      Accepted manuscript online: 
PACS:  07.57.-c (Infrared, submillimeter wave, microwave and radiowave instruments and equipment)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  

Cite this article: 

Yin Guo-Bing(尹国冰), Li Shu-Guang(李曙光), Wang Xiao-Yan(王晓琰), and Liu Shuo(刘硕) High birefringence, low loss terahertz photonic crystal fibres with zero dispersion at 0.3 THz 2011 Chin. Phys. B 20 090701

[1] Fischer B, Hoffmann M, Helm H, Wilk R, Rutz F, Kleine-Ostmann T, Koch M and Jepsen P 2005 Opt. Express 13 5205
[2] Jastrow C, Munter K, Piesiewicz R, Kurner T, Koch M and Kleine-Ostmann T 2008 Electron. Lett. 44 213
[3] Jackson J B, Mourou M, Whitaker J F, Duling III I N, Williamson S L, Menu M and Mourou G A 2008 Opt. Commun. 281 527
[4] Song Q, Zhao Y, Redo-Sanchez A, Zhang C and Liu X 2009 Opt. Commun. 282 2019
[5] Jing L and Yao J Q 2010 Optoelectronics Lett. 6 321
[6] Wang K and Mittleman D M 2004 Nature 432 376
[7] Jeon T I, Zhang J Q and Grischkowsky D 2005 Appl. Phys. Lett. 86 161904
[8] Chen L J, Chen H W, Kao T F, Lu J Y and Sun C K 2006 Opt. Lett. 31 308
[9] Hassani A, Dupuis A and Skorobogatiy M 2008 Opt. Express 16 6340
[10] Atakaramians S, Afshar V S, Ebendorff-Heidepriem H, Nagel M, Fischer B M, Abbott D and Monro T M 2009 Opt. Express 17 14053
[11] Han H, Park H, Cho M and Kim J 2002 Appl. Phys. Lett. 80 2634
[12] Jiang Y J, Shi W H, Li P L and Zhao Y 2009 Acta Phys. Sin. 59 5559 (in Chinese)
[13] Hu J and Chen H M 2008 Chinese Journal of Lasers 35 567 (in Chinese)
[14] Nielsen K, Rasmussen H K, Adam A J, Planken P C, Bang O and Jepsen P U 2009 Opt. Express 17 8592
[15] Yao J Q, Chi N, Yang P F, Cui H X, Wang J L, Li J S, Xu D G and Ding X 2009 Chinese Journal of Lasers 36 2213 (in Chinese)
[16] Bai J J, Wang C H, Huo B Z, Wang X H and Chang S J 2011 Acta Phys. Sin. 60 (in Press) (in Chinese)
[17] Fu X X and Chen M Y 2011 Acta Phys. Sin. 60 (in Chinese)
[18] Agrawal G P 2001 Nonlinear Fiber Optics 3rd edn. (New York: Academic Press) p. 9
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[12] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[13] A simple and comprehensive electromagnetic theory uncovering complete picture of light transport in birefringent crystals
Jianbo Pan(潘剑波), Jianfeng Chen(陈剑锋), Lihong Hong(洪丽红), Li Long(龙利), and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(5): 054201.
[14] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[15] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
No Suggested Reading articles found!