Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 068105    DOI: 10.1088/1674-1056/20/6/068105
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Measurement accuracy analysis of the free carrier absorption determination of the electronic transport properties of silicon wafers

Zhang Xi-Ren(张希仁), Gao Chun-Ming(高椿明), Zhou Ying(周鹰), and Wang Zhan-Ping(王占平)
School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  By introducing the random and systematic errors in simulated data computed from conventional frequency-scan and laterally resolved modulated free carrier absorption theory models, we investigate the relative determination sensitivities of three electronic transport properties, namely, carrier lifetime, carrier diffusivity and front surface recombination velocity of silicon wafers determined by frequency-scan and laterally resolved techniques. The phase and amplitude data with random errors as functions of the modulation frequency at zero pump-probe-beam separation or of the two-beam separation at four different modulation frequencies are simultaneously fitted to an appreciated carrier diffusion model to extract three transport parameters. The statistical results and fitted accuracies of the transport parameter determined by both techniques are theoretically analysed. Corresponding experimental results are carried out to compare to the simulated results. The simulated and experimental results show that the determination of the transport properties of silicon wafers by the laterally resolved technique are more accurate, as compared with that by the frequency-scan technique.
Keywords:  laterally resolved modulated free-carrier absorption      frequency scans      electronic transport properties      accuracy  
Received:  14 September 2010      Revised:  14 January 2011      Accepted manuscript online: 
PACS:  81.70.Fy (Nondestructive testing: optical methods)  
  72.02.Jv  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. ZYGX2009J051).

Cite this article: 

Zhang Xi-Ren(张希仁), Gao Chun-Ming(高椿明), Zhou Ying(周鹰), and Wang Zhan-Ping(王占平) Measurement accuracy analysis of the free carrier absorption determination of the electronic transport properties of silicon wafers 2011 Chin. Phys. B 20 068105

[1] Sanii F, Schwartz R J, Pierret R F and Au W M 1989 Proceedings of the 20th IEEE Photovoltaic Specialists Conference, 1988 Las Vegas, IEEE, New York p. 575
[2] Sanii F, Giles F P and Schwartz R J 1992 Solid-State Electronics 35 311
[3] Glunz S W and Warta W 1995 J. Appl. Phys. 77 3243
[4] Glunz S W, Sproul A B, Warta W and Wettling W 1994 J. Appl. Phys. 75 1611
[5] Mandelis A, Batista J and Shaughnessy D 2003 Phys. Rev. B 67 205208-1
[6] Batista J, Mandelis A and Shaughnessy D 2003 Appl. Phys. Lett. 82 4077
[7] Li B, Shaughnessy D, Mandelis A, Batista J and Garcia J 2004 J. Appl. Phys. 96 186
[8] Li B, Shaughnessy D and Mandelis A 2005 J. Appl. Phys. 97 023701-1
[9] Forget B C, Barbereau I, Fournier D, Tuli S and Battacharyya A B 1996 Appl. Phys. Lett. 69 1107
[10] Ikari T, Roger J P and Fournier D 2003 Rev. Sci. Instrum. 74 553
[11] Cheng J and Zhang S 1991 J. Appl. Phys. 70 6999
[12] Mandelis A, Bleiss R and Shimura F 1993 J. Appl. Phys. 74 3431
[13] Salnick A, Mandelis A and Jean C 1996 Appl. Phys. Lett. 69 2522
[14] Shaughnessy D and Mandelis A 2003 J. Appl. Phys. 93 5236
[15] Schönecker A, Eikelboom J A, Burgers A R, Lölgen P, Leguijt C and Sinke W C 1996 J. Appl. Phys. 79 1497
[16] Rodriguez M E, Mandelis A, Pan G, Nicolaides L, Garcia J A and Riopel Y 2000 J. Electrochem. Soc. 147 687
[17] Zhang X, Li B and Gao C 2006 Appl. Phys. Lett. 89 112120-1
[18] Zhang X, Li B and Gao C 2008 J. Appl. Phys. 103 033709-1
[19] Zhang X, Li B and Liu X 2008 J. Appl. Phys. 104 103705-1
[20] Wagner R E and Mandelis A 1996 Semicond. Sci. Technol. 11 289
[21] Wagner R E and Mandelis A 1996 Semicond. Sci. Technol. 11 300
[1] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[2] Accuracy design of ultra-low residual reflection coatingsfor laser optics
Huasong Liu(刘华松), Xiao Yang(杨霄), Lishuan Wang(王利栓), Hongfei Jiao(焦宏飞), Yiqin Ji(季一勤), Feng Zhang(张锋), D an Liu(刘丹丹), Chenghui Jiang(姜承慧), Yugang Jiang(姜玉刚), Deying Chen(陈德应). Chin. Phys. B, 2017, 26(7): 077801.
[3] Calibration chain design based on integrating sphere transfer radiometer for SI-traceable on-orbit spectral radiometric calibration and its uncertainty analysis
Wei-Ning Zhao(赵维宁), Wei Fang(方伟), Li-Wei Sun(孙立微), Li-Hong Cui(崔立红), Yu-Peng Wang(王玉鹏). Chin. Phys. B, 2016, 25(9): 090701.
[4] Physical mechanism of mind changes and tradeoffs among speed, accuracy, and energy cost in brain decision making: Landscape, flux, and path perspectives
Han Yan(闫晗), Kun Zhang(张坤), Jin Wang(汪劲). Chin. Phys. B, 2016, 25(7): 078702.
[5] Improved kernel gradient free-smoothed particle hydrodynamics and its applications to heat transfer problems
Juan-Mian Lei(雷娟棉) and Xue-Ying Peng(彭雪莹). Chin. Phys. B, 2016, 25(2): 020202.
[6] Accuracy and effectiveness of self-gating signals in free-breathing three-dimensional cardiac cine magnetic resonance imaging
Shuo Li(李硕), Lei Wang(王磊), Yan-Chun Zhu(朱艳春), Jie Yang(杨洁), Yao-Qin Xie(谢耀钦), Nan Fu(付楠), Yi Wang(王乙), Song Gao(高嵩). Chin. Phys. B, 2016, 25(12): 128703.
[7] Increasing the range accuracy of three-dimensional ghost imaging ladar using optimum slicing number method
Yang Xu (杨旭), Zhang Yong (张勇), Xu Lu (徐璐), Yang Cheng-Hua (杨成华), Wang Qiang (王强), Liu Yue-Hao (刘越豪), Zhao Yuan (赵远). Chin. Phys. B, 2015, 24(12): 124202.
[8] Novel wavelength-accurate InP-based arrayed waveguide grating
Pan Pan (潘盼), An Jun-Ming (安俊明), Wang Hong-Jie (王红杰), Wang Yue (王玥), Zhang Jia-Shun (张家顺), Wang Liang-Liang (王亮亮), Dai Hong-Qing (代红庆), Zhang Xiao-Guang (张晓光), Wu Yuan-Da (吴远大), Hu Xiong-Wei (胡雄伟). Chin. Phys. B, 2014, 23(4): 044210.
[9] Theoretical description of improving measurement accuracy for incoherence Mie Doppler wind lidar
Du Jun (杜军), Ren De-Ming (任德明), Zhao Wei-Jiang (赵卫疆), Qu Yan-Chen (曲彦臣), Chen Zhen-Lei (陈振雷), Geng Li-Jie (耿利杰 ). Chin. Phys. B, 2013, 22(2): 024211.
[10] Switching properties of bi-OPE-monothiol molecular junctions: Substituent effects and improvement of open-close ratio
Fu Xiao-Xiao (傅潇潇), Zhang Li-Xia (张丽霞), Li Zong-Liang (李宗良), Wang Chuan-Kui (王传奎). Chin. Phys. B, 2013, 22(2): 028504.
[11] Effect of the nonlinearity of CCD in Fourier transform profilometry on spectrum overlapping and measurement accuracy
Qiao Nao-Sheng (乔闹生), Zou Bei-Ji (邹北骥). Chin. Phys. B, 2013, 22(1): 014203.
[12] Hydration effect on the electronic transport properties of oligomeric phenylene ethynylene molecular junctions
Li Zong-Liang(李宗良), Li Huai-Zhi(李怀志), Ma Yong (马勇), Zhang Guang-Ping(张广平), and Wang Chuan-Kui(王传奎). Chin. Phys. B, 2010, 19(6): 067305.
[13] Elaborate calibration procedure for cell irradiation at the CAS-LIBB single-particle microbeam
Hu Zhi-Wen (胡智文), Ding Ke-Jian (丁克俭), Yu Liang-Deng (余量登), Zhang Jun (张俊), Wu Li-Jun (吴李君), Yu Zeng-Liang (余增亮). Chin. Phys. B, 2006, 15(4): 659-664.
[14] Studies of the beam finding and targeting accuracy of the CAS-LIBB single-particle microbeam
Wang Xiao-Hua (王晓华), Wang Xu-Fei (王旭飞), Hu Zhi-Wen (胡智文), Chen Lian-Yun (陈连运), Zhang Jun (张俊), Zhan Fu-Ru (詹福如), Li Jun (李军), Chen Bin (陈斌), Xu Ming-Liang (许明亮), Wu Li-Jun (吴李君), Wang Shao-Hu (王绍虎), Yu Zeng-Liang (余增亮). Chin. Phys. B, 2005, 14(7): 1277-1281.
[15] Electronic transport properties of metallic single-walled carbon nanotubes
Cao Jue-Xian (曹觉先), Yan Xiao-Hong (颜晓红), Xiao Yang (肖杨), Ding Jian-Wen (丁建文). Chin. Phys. B, 2003, 12(12): 1440-1444.
No Suggested Reading articles found!