Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 083602    DOI: 10.1088/1674-1056/19/8/083602
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Geometrical, energetic and electronic properties of Aun–(C3H6O)m complexes (n=3,5, m ≤ n): A density functional theory study

Li Ying-Chun(李迎春), Yang Chuan-Lu(杨传路), Sun Mei-Yu(孙美玉), Li Xiao-Xia(李晓霞),An Yi-Peng(安义鹏), and Wang Mei-Shan(王美山)
School of Physics, Ludong University, Yantai 264011, China
Abstract  The interactions of acetone molecules with clusters of Au3 and Au5 are investigated by using a density functional theory (DFT) within a generalized gradient approximation (GGA). The geometries, adsorption energies and deformation electron density distributions are used to analyse these interactions. The present calculations show that more than one acetone molecule can be adsorbed onto small gold clusters, and this adsorption is different from that of single molecule absorption. The coordination number of the adsorption site on the gold cluster is the dominant factor responsible for the strength of the interactions. The effects of the Au–O bond lengths in the complexes on adsorption energies between Au clusters and acetone molecules are also examined.
Keywords:  acetone molecule      gold cluster      complex      adsorption  
Received:  31 March 2009      Revised:  06 January 2010      Accepted manuscript online: 
PACS:  71.20.Rv (Polymers and organic compounds)  
  61.46.Bc (Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))  
  68.43.Mn (Adsorption kinetics ?)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674114 and 10974078).

Cite this article: 

Li Ying-Chun(李迎春), Yang Chuan-Lu(杨传路), Sun Mei-Yu(孙美玉), Li Xiao-Xia(李晓霞),An Yi-Peng(安义鹏), and Wang Mei-Shan(王美山) Geometrical, energetic and electronic properties of Aun–(C3H6O)m complexes (n=3,5, m ≤ n): A density functional theory study 2010 Chin. Phys. B 19 083602

[1] West J L and Halas N J 2003 Ann. Rev. Biomed. Eng. 5 285
[2] Jin R, Cao Y, Mirkin C A, Kelly K L, Schatz G C and Zheng J G 2001 Science 294 1901
[3] H"akkinen H, Yoon B and Landman U 2003 J. Phys. Chem. A 107 6168
[4] Lee T H and Ervin K M 1994 J. Phys. Chem. 98 10023
[5] Valden M, Lai X and Goodman D W 1998 Science 281 1647
[6] Letardi S and Cleri F 2004 J. Chem. Phys. 120 10062
[7] Rousseau R and Marx D 2000 J. Chem. Phys. 112 761
[8] Li Y C, Yang C L, Sun M Y, Li X X, An Y P, Wang M S, Ma X G and Wang D H 2009 J. Phys. Chem. A 113 1353
[9] Shafai G S, Shetty S, Krishnamurty S, Shah V and Kanhere D G 2007 J. Chem. Phys. 126 014704
[10] Lavrich D J, Wetterer S M, Bernasek S L and Scoles G 1998 J. Phys. Chem. B 102 3456
[11] Riederer D E, Chatterjee R, Rosencrance S W, Postawa Z, Dunbar T D, Allara D L and Winograd N 1997 J. Am. Chem. Soc. 119 8089
[12] Joo S W, Han S W and Kim K 2001 J. Colloid Interface Sci. 240 391
[13] Gottschalck J and Hammer B 2002 J. Chem. Phys. 116 784
[14] Majumder C, Briere T M, Mizuseki H and Kawazoe Y 2002 J. Chem. Phys. 117 2819
[15] McNally H, Janes D B, Kasibhatla B and Kubiak C P 2002 Superlattices Microstruct. 31 239
[16] Zhai H J and Wang L S 2005 J. Chem. Phys. 122 051101
[17] Varganov S A, Olson R M, Gordon M S and Metiu H 2004 J. Chem. Phys. 120 5169
[18] Ge G X, Cao H B, Jing Q and Luo Y H 2009 Acta Phys. Sin. 58 8236 (in Chinese)
[19] Varganov S A, Olson R M, Gordon M S, Mills G and Metiu H 2002 J. Chem. Phys. 119 2531
[20] Hayashi T, Tanaka K and Haruta M 1998 J. Catal. 178 566
[21] Shankar S S, Rai A, Ankamwar B, Singh A, Ahmad A and Sastry M 2004 Nature Mater. 3 482
[22] Li G, Lauer M, Schulz A, Boettcher C, Li F and Fuhrhop J H 2003 Langmuir. 19 6483
[23] Kryachko E S and Remacle F 2005 J. Phys. Chem. B 109 22746
[24] Hirabayashi S, Okawa R, Ichihashi M, Kondow T and Kawazoe K 2007 J. Phys. Chem. A 111 7664
[25] Delley B 1990 J. Chem. Phys. 92 508
[26] Delley B 2000 J. Chem. Phys. 113 7756
[27] Accelrys 2005 Materials Studio Release3.2 (San Diego: Accelrys Software, Inc.)
[28] Koelling D D and Harmon B N 1977 J. Phys. C: Solid State Phys. 10 3107
[29] Douglas M and Kroll N M 1974 Acta Phys. 82 89
[30] Perdew J, Burke P K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396(E)
[32] Delley B 2006 J. Phys. Chem. A 110 13632
[33] Wang J, Wang G and Zhao J 2002 Phys. Rev. B 66 035418
[34] Nelson R and Pierce L 1965 J. Mol. Spectrosc. 18 344
[35] Cheeseman M A and Eyler J R 1992 J. Phys. Chem. 96 1082
[36] Li X, Tollberg B, Hu X and Wang L 2006 J. Phys. Chem. 124 114309
[37] Fern'andez E M, Soler J M, Garz'on I L and Balb'as L C 2004 Phys. Rev. B 70 165403
[38] P'erez G B, Garz'on I L and Novaro O 1999 J. Mol. Struc. (Theochem) 493 225
[39] Delley B 1986 Chem. Phys. Lett. 110 329
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[3] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[4] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[5] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[8] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[9] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[12] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[13] Voter model on adaptive networks
Jinming Du(杜金铭). Chin. Phys. B, 2022, 31(5): 058902.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
No Suggested Reading articles found!