Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 113301    DOI: 10.1088/1674-1056/19/11/113301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Ionisation of Rydberg hydrogen atom near a metal surface by short pulse laser

Wang Lei(汪磊), Yang Hai-Feng(杨海峰), Liu Xiao-Jun(柳晓军), and Liu Hong-Ping(刘红平)†ger
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  In the ionisation of Rydberg hydrogen atoms near a metal surface, the electron will escape from the nucleus and arrive at the detector in a time sequence. This probability flux train relies on the initial electron wave packet irradiated by the laser pulse. For simplicity, the laser pulse is usually simplified to a delta function in energy domain, resulting in a sharp initial arrival time with an exponentially decaying tail at the detector. Actually and semiclassically, the initial outgoing wave should be modeled as an ensemble of trajectories propagating away from the atomic core in all directions with a range of launch times and a range of energies. In this case, each pulse in the pulse train is averaged out rather than a sharp profile. We examine how energy and time averaging of the electron wave packet affects the resolution of escaping electron pulses and study the energy dependence of the arrival time for each pulse in the ionisation train. An optimization condition for the laser pulse shape to generate narrow ionisation electron pulse in the train is obtained. The ionisation rates with various excitation energy are calculated also, which show the excitation to higher N Rydberg states will narrow the electron pulse as well.
Keywords:  Rydberg hydrogen      ionisation      trajectory  
Received:  27 May 2010      Revised:  06 July 2010      Accepted manuscript online: 
PACS:  32.80.Fb (Photoionization of atoms and ions)  
  34.35.+a (Interactions of atoms and molecules with surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774162).

Cite this article: 

Wang Lei(汪磊), Yang Hai-Feng(杨海峰), Liu Xiao-Jun(柳晓军), and Liu Hong-Ping(刘红平) Ionisation of Rydberg hydrogen atom near a metal surface by short pulse laser 2010 Chin. Phys. B 19 113301

[1] Landau L D and Lifshitz E M 1979 Quantum Mechanics: Nonrelativistic Theory (New York: Pergamon)
[2] Alber G, Ritsch H and Zoller P 1986. Phys. Rev. A 34 1058.
[3] Broers B, Christian J F and van Linden van den Heuvell H B 1994 Phys. Rev. A 49 2498
[4] Mitchell K A, Handley J P, Tighe B, Flower A and Delos J B 2004 Phys. Rev. Lett. 92 073001
[5] Nicole C, Sluimer I, Rosca-Pruna F, Warntjes M, Vrakking M, Bordas C, Texier F and Robicheaux F 2000 Phys. Rev. Lett. 85 4024
[6] ten Wolde A, Noordam L D, Lagendijk A and van Linden van den Heuvell H B 1988 Phys. Rev. Lett. 61 2099
[7] Yeazell J A and Stroud Jr C R 1988 Phys. Rev. Lett. 60 1494
[8] Yeazell J A, Mallalieu M and Stroud C R 1990 Phys. Rev. Lett. 64 2007
[9] Lankhuijzen G M and Noordam L D 1996 Phys. Rev. Lett. 76 1784
[10] Yeazell J A and Stroud C R 1987 Phys. Rev. A 35 2806
[11] Molander W A, Stroud C R and Yeazell J A 1986. J. Phys. B 19 L461
[12] Nicole C, Offerhaus H L, Vrakking M J J, L'epine F and Bordas C 2002 Phys. Rev. Lett. 88 133001
[13] Blondel C, Delsart C and Dulieu F 1996 Phys. Rev. Lett. 77 3755
[14] Deng S H, Gao S, Li Y P, Xu X Y and Lin S L 2010 Chin. Phys. B 19 040511
[15] Mitchell K A, Handley J P, Tighe B, Flower A and Delos J B 2004 Phys. Rev. A 70 043407
[16] Wang D H, Huang K Y and Lin S L 2009 Euro. Phys. J. D 54 699
[17] Bordas C, L'epine F, Nicole C and Varkking M J J 2003 Phys. Rev. A 68 012709
[18] Topccu T and Robicheaux F 2007 J. Phys. B 40 1925
[19] Haggerty M R and Delos J B 2000 Phys. Rev. A 61 053406
[20] Du M L and Delos J B 1987 Phys. Rev. Lett. 58 1731
[21] Du M L and Delos J B 1988 Phys. Rev. A 38 1913 endfootnotesize
[1] Quantum and quasiclassical dynamics of C($^{3} P$) + H$_{2}(^{1} \varSigma_{\text{g}}^+)\rightarrow H(^{2} S)$ + CH($^{2} \varPi$) reaction: Coriolis coupling effects and stereodynamics
Dong Liu(刘栋), Lulu Zhang(张路路), Juan Zhao(赵娟), Qin Zhang(张芹), Yuzhi Song(宋玉志), and Qingtian Meng(孟庆田). Chin. Phys. B, 2022, 31(4): 043102.
[2] Role of potential on high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser fields
Xu-Xu Shen(申许许), Jun Wang(王俊), Fu-Ming Guo(郭福明), Ji-Gen Chen(陈基根), Yun-Jun Yang(杨玉军). Chin. Phys. B, 2020, 29(8): 083201.
[3] Trajectory engineering via a space-fractional Schrödinger equation with dynamic linear index potential
Yunji Meng(孟云吉), Youwen Liu(刘友文), Haijiang Lv(吕海江). Chin. Phys. B, 2020, 29(5): 054201.
[4] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[5] Find slow dynamic modes via analyzing molecular dynamics simulation trajectories
Chuanbiao Zhang(张传彪) and Xin Zhou(周昕)†. Chin. Phys. B, 2020, 29(10): 108706.
[6] Bohmian trajectory perspective on strong field atomic processes
Xuan-Yang Lai(赖炫扬), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2020, 29(1): 013205.
[7] Study of highly excited vibrational dynamics of HCP integrable system with dynamic potential methods
Aixing Wang(王爱星), Lifeng Sun(孙立风), Chao Fang(房超), Yibao Liu(刘义保). Chin. Phys. B, 2020, 29(1): 013101.
[8] A novel particle tracking velocimetry method for complex granular flow field
Bi-De Wang(王必得), Jian Song(宋健), Ran Li(李然), Ren Han(韩韧), Gang Zheng(郑刚), Hui Yang(杨晖). Chin. Phys. B, 2020, 29(1): 014207.
[9] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[10] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[11] Effect of laser intensity on quantum trajectories in the macroscopic high-order harmonic generation
Yun Pan(潘云), Fuming Guo(郭福明), Yujun Yang(杨玉军), Dajun Ding(丁大军). Chin. Phys. B, 2019, 28(11): 113201.
[12] Trajectory equation of a lump before and after collision with line, lump, and breather waves for (2+1)-dimensional Kadomtsev-Petviashvili equation
Zhao Zhang(张钊), Xiangyu Yang(杨翔宇), Wentao Li(李文涛), Biao Li(李彪). Chin. Phys. B, 2019, 28(11): 110201.
[13] High-order harmonic generation in a two-color strong laser field with Bohmian trajectory theory
Yi-Yi Huang(黄祎祎), Xuan-Yang Lai(赖炫扬), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2018, 27(7): 073204.
[14] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[15] Quantitative evaluation of space charge effects of laser-cooled three-dimensional ion system on a secular motion period scale
Li-Jun Du(杜丽军), Hong-Fang Song(宋红芳), Shao-Long Chen(陈邵龙), Yao Huang(黄垚), Xin Tong(童昕), Hua Guan(管桦), Ke-Lin Gao(高克林). Chin. Phys. B, 2018, 27(4): 043701.
No Suggested Reading articles found!