Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(9): 3163-3169    DOI: 10.1088/1674-1056/17/9/001
RAPID COMMUNICATION   Next  

Study of superstructure II in multiferroic BiMnO3

Ge Bing-Hui(葛炳辉), Li Fang-Hua(李方华), Li Xue-Ming(李雪明), Wang Yu-Mei (王玉梅), Chi Zhen-Hua (迟振华), and Jin Chang-Qing (靳常青)
Beijing National Laboratory for Condensed Matter Physics,Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The crystal structure of the minor phase, named superstructure II, existing in multiferroic compound BiMnO3 has been studied by electron diffraction and high-resolution transmission electron microscopy. Domains of major and minor phases coexisting in BiMnO3 were observed in high-resolution electron microscope images. The unit cell of minor phase was determined to be triclinic with the size $4\times 4\times 4$ times as large as the distorted perovskite subcell. The [111] and [10$\bar{1}$] projected structure maps of the minor phase have been derived from the corresponding images by means of the image processing. A possible rough three-dimensional (3D) structure model was proposed based on the 3D structural information extracted from the two projected structure maps. Since there is no inversion centre in the proposed model, the minor phase may contribute to the ferroelectric property of BiMnO3.
Keywords:  multiferroics      BiMnO3      high-resolution transmission electron microscopy      image processing  
Received:  03 July 2008      Revised:  08 July 2008      Accepted manuscript online: 
PACS:  61.66.Fn (Inorganic compounds)  
  61.05.J- (Electron diffraction and scattering)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.50.Dd (Nonmetallic ferromagnetic materials)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 50672124) and Ministry of Science and Technology (MOST) of China (Grant Nos 2005CB724402 and 2007CB925003).

Cite this article: 

Ge Bing-Hui(葛炳辉), Li Fang-Hua(李方华), Li Xue-Ming(李雪明), Wang Yu-Mei (王玉梅), Chi Zhen-Hua (迟振华), and Jin Chang-Qing (靳常青) Study of superstructure II in multiferroic BiMnO3 2008 Chin. Phys. B 17 3163

[1] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[4] Deep learning facilitated whole live cell fast super-resolution imaging
Yun-Qing Tang(唐云青), Cai-Wei Zhou(周才微), Hui-Wen Hao(蒿慧文), and Yu-Jie Sun(孙育杰). Chin. Phys. B, 2022, 31(4): 048705.
[5] Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification
Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪). Chin. Phys. B, 2022, 31(12): 120701.
[6] Novel quantum secret image sharing scheme
Gao-Feng Luo(罗高峰), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文). Chin. Phys. B, 2019, 28(4): 040302.
[7] Structures and local ferroelectric polarization switching properties of orthorhombic YFeO3 thin film prepared by a sol-gel method
Runlan Zhang(张润兰), Shuaishuai Li(李帅帅), Changle Chen(陈长乐), Li-An Han(韩立安), Shanxin Xiong(熊善新). Chin. Phys. B, 2019, 28(3): 037701.
[8] Quantitative HRTEM and its application in the study of oxide materials
Chun-Lin Jia(贾春林), Shao-Bo Mi(米少波), Lei Jin(金磊). Chin. Phys. B, 2018, 27(5): 056803.
[9] Passive ranging and a three-dimensional imaging system through wavefront coding
Xing-Xu Zhang(张星煦), Lei Qiao(乔磊), Ting-Yu Zhao(赵廷玉), Rong-Sheng Qiu(仇荣生). Chin. Phys. B, 2018, 27(5): 054205.
[10] Quantitative calculations of polarizations arising from the symmetric and antisymmetric exchange strictions in Tm-doped GdMnO3
Qin Ming-Hui (秦明辉), Lin Lin (林林), Li Lin (李林), Jia Xing-Tao (贾兴涛), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2015, 24(3): 037509.
[11] Al-doping-induced magnetocapacitance in the multiferroic AgCrS2
Liu Rong-Deng (刘荣灯), He Lun-Hua (何伦华), Yan Li-Qin (闫丽琴), Wang Zhi-Cui (王志翠), Sun Yang (孙阳), Liu Yun-Tao (刘蕴韬), Chen Dong-Feng (陈东风), Zhang Sen (张森), Zhao Yong-Gang (赵永刚), Wang Fang-Wei (王芳卫). Chin. Phys. B, 2015, 24(12): 127507.
[12] Raman phonons in multiferroic FeVO4 crystals
Zhang An-Min (张安民), Liu Kai (刘凯), Ji Jian-Ting (籍建葶), He Chang-Zhen (何长振), Tian Yong (田勇), Jin Feng (金峰), Zhang Qing-Ming (张清明). Chin. Phys. B, 2015, 24(12): 126301.
[13] Structural and physical properties of BiFeO3 thin films epitaxially grown on SrTiO3 (001) and polar (111) surfaces
He Shu-Min (贺树敏), Liu Guo-Lei (刘国磊), Zhu Da-Peng (朱大鹏), Kang Shi-Shou (康仕寿), Chen Yan-Xue (陈延学), Yan Shi-Shen (颜世申), Mei Liang-Mo (梅良模). Chin. Phys. B, 2014, 23(3): 036801.
[14] Ho and Ti co-doped BiFeO3 multiferroic ceramics with enhanced magnetization and ultrahigh electrical resistivity
Gu Yan-Hong (谷艳红), Liu Yong (刘雍), Yao Chao (姚超), Ma Yan-Wei (马衍伟), Wang Yu (王雨), Chan Helen Lai-Wah (陈王丽华), Chen Wan-Ping (陈万平). Chin. Phys. B, 2014, 23(3): 037501.
[15] Multiferroicity in B-site ordered double perovskite Y2MnCrO6
Fang Yong (房勇), Yan Shi-Ming (颜士明), Qiao Wen (乔文), Wang Wei (王伟), Wang Dun-Hui (王敦辉), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(11): 117501.
No Suggested Reading articles found!