Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047406    DOI: 10.1088/1674-1056/ad2a78
RAPID COMMUNICATION Prev   Next  

Robust Tc in element molybdenum up to 160 GPa

Xinyue Wu(吴新月)1,†, Shumin Guo(郭淑敏)1,†, Jianning Guo(郭鉴宁)1, Su Chen(陈诉)1, Yulong Wang(王煜龙)1, Kexin Zhang(张可欣)1, Chengcheng Zhu(朱程程)1, Chenchen Liu(刘晨晨)1, Xiaoli Huang(黄晓丽)1,‡, Defang Duan(段德芳)1, and Tian Cui(崔田)2
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
2 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity. Although elements with d electrons are usually not favored by conventional BCS, the record superconducting critical temperature (Tc) in element scandium (Sc) has further ignited the intensive attention on transition metals. The element molybdenum (Mo) with a half-full d-orbital is studied in our work, which fills the gap in the study of Mo under high pressure and investigates the pressure dependence of superconductivity. In this work, we exhibit a robust superconductivity of Mo in the pressure range of 5 GPa to 160 GPa via high-pressure electrical transport measurements, the Tc varies at a rate of 0.013 K/GPa to 8.56 K at 160 GPa. Moreover, the superconductivity is evidenced by the Tc shifting to lower temperature under applied magnetic fields, and the upper critical magnetic fields are extrapolated by the WHH equation and GL equation; the results indicate that the maximum upper critical magnetic field is estimated to be 8.24 T at 137 GPa. We further investigate the superconducting mechanism of Mo, the theoretical calculations indicate that the superconductivity can be attributed to the strong coupling between the electrons from the partially filled d band and the phonons from the frequency zone of 200—400 cm-1.
Keywords:  molybdenum      element superconductor      high pressure      superconductivity  
Received:  19 January 2024      Revised:  01 February 2024      Accepted manuscript online:  19 February 2024
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  62.50.-p (High-pressure effects in solids and liquids)  
  05.70.Fh (Phase transitions: general studies)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1405500), the National Natural Science Foundation of China (Grant Nos. 52372257 and 52072188), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT-15R23), and the Zhejiang Provincial Science and Technology Innovation Team (Grant No. 2021R01004).
Corresponding Authors:  Xiaoli Huang     E-mail:  huangxiaoli@jlu.edu.cn

Cite this article: 

Xinyue Wu(吴新月), Shumin Guo(郭淑敏), Jianning Guo(郭鉴宁), Su Chen(陈诉), Yulong Wang(王煜龙), Kexin Zhang(张可欣), Chengcheng Zhu(朱程程), Chenchen Liu(刘晨晨), Xiaoli Huang(黄晓丽), Defang Duan(段德芳), and Tian Cui(崔田) Robust Tc in element molybdenum up to 160 GPa 2024 Chin. Phys. B 33 047406

[1] Hamlin J J 2015 Phys. C 514 59
[2] Schilling J S 2007 Phys. C 460——462 182
[3] Falge R L 1967 Phys. Lett. A 24 579
[4] Sekula S T, Kernohan R H and Love G R 1967 Phys. Rev. 155 364
[5] Smith T S and Daunt J G 1952 Phys. Rev. 88 1172
[6] Struzhkin V V, Timofeev Y A, Hemley R J and Mao H K 1997 Phys. Rev. Lett. 79 4262
[7] Smith T F 1970 Phys. Lett. A 33 465
[8] Zhang L, Wang Y, Lv J and Ma Y 2017 Nat. Rev. Mater. 2 17005
[9] Hemley R J 2000 Annu. Rev. Phys. Chem. 51 763
[10] Tse J S, Yao Y and Ma Y 2007 J. Phys.:Condens. Matter 19 425208
[11] Shimizu K, Ishikawa H, Takao D, Yagi T and Amaya K 2002 Nature 419 597
[12] Akahama Y, Kobayashi M and Kawamura H 1990 J. Phys. Soc. Jpn. 59 3843
[13] Chen W, Semenok D V, Troyan I A, Ivanova A G, Huang X, Oganov A R and Cui T 2020 Phys. Rev. B 102 134510
[14] Shirotani I, Kawamura H, Tsuburaya K and Tachikawa K 1987 Jpn. J. Appl. Phys. 26 921
[15] Eremets M I, Struzhkin V V, Mao H K and Hemley R J 2001 Science 293 272
[16] Struzhkin V V, Hemley R J, Mao H K and Timofeev Y A 1997 Nature 390 382
[17] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[18] Richardson C F and Ashcroft N W 1997 Phys. Rev. Lett. 78 118
[19] Wigner E and Huntington H B 2004 J. Chem. Phys 3 764
[20] Dias R P and Silvera I F 2017 Science 355 715
[21] Sakata M, Nakamoto Y, Shimizu K, Matsuoka T and Ohishi Y 2011 Phys. Rev. B 83 220512
[22] Yabuuchi T, Matsuoka T, Nakamoto Y and Shimizu K 2006 J. Phys. Soc. Jpn. 75 083703
[23] Skriver H L 1982 Phys. Rev. Lett. 49 1768
[24] Cao Z Y, Jang H, Choi S, Kim J, Kim S, Zhang J B, Sharbirin A S, Kim J and Park T 2023 NPG Asia Mater. 15 5
[25] Hamlin J J, Tissen V G and Schilling J S 2007 Phys. C 451 82
[26] Ishizuka M, Iketani M and Endo S 2000 Phys. Rev. B 61 R3823
[27] Liu X, Jiang P, Wang Y, Li M, Li N, Zhang Q, Wang Y, Li Y L and Yang W 2022 Phys. Rev. B 105 224511
[28] Zhang C, He X, Liu C, Li Z, Lu K, Zhang S, Feng S, Wang X, Peng Y, Long Y, Yu R, Wang L, Prakapenka V, Chariton S, Li Q, Liu H, Chen C and Jin C 2022 Nat. Commun. 13 5411
[29] Wang K, Liu C, Liu G, Yu X, Zhou M, Wang H, Chen C and Ma Y 2023 Proc. Natl. Acad. Sci. USA 120 e2218856120
[30] He X, Zhang C, Li Z, Zhang S, Feng S, Zhao J, Lu K, Min B, Peng Y, Wang X, Song J, Wang L, I. Kawaguchi S, Ji C, Li B, Liu H, Tse J S and Jin C 2023 Chin. Phys. Lett. 40 107403
[31] Ying J, Liu S, Lu Q, Wen X, Gui Z, Zhang Y, Wang X, Sun J and Chen X 2023 Phys. Rev. Lett. 130 256002
[32] Wang K, Sun Y, Zhou M, Liu H, Ma G, Wang H, Liu G and Ma Y 2023 Phys. Rev. Res. 5 043248
[33] Skriver H L 1985 Phys. Rev. B 31 1909
[34] Pettifor D G 1970 J. Phys. C:Solid State Phys. 3 367
[35] Johansson B and Rosengren A 1975 Phys. Rev. B 11 2836
[36] Tse J S, Li Z, Uehara K, Ma Y and Ahuja R 2004 Phys. Rev. B 69 132101
[37] Geballe T H, Matthias B T, Corenzwit E and Hull G W 1962 Phys. Rev. Lett. 8 313
[38] Ruoff A L, Xia H and Xia Q 1992 Rev. Sci. Instrum. 63 4342
[39] Akahama Y, Hirao N, Ohishi Y and Singh A K 2014 J. Appl. Phys. 116 223504
[40] Pei C, Zhang J, Wang Q, Zhao Y, Gao L, Gong C, Tian S, Luo R, Li M, Yang W, Lu Z Y, Lei H, Liu K and Qi Y 2023 Natl. Sci. Rev. 10 nwad034
[41] Khadka B and Adhikari N P 2023 J. Supercond. Novel Magn. 36 1503
[42] Akahama Y and Kawamura H 2006 J. Appl. Phys. 100 043516
[43] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[44] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[45] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[46] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[47] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[48] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[49] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.:Condens. Matter 21 395502
[50] Carbotte J P 1990 Rev. Mod. Phys. 62 1027
[51] Ems S C and Swihart J C 1971 Phys. Lett. A 37 255
[52] Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295
[53] T Baumgartner M E, H W Weber, R Flukiger, C Scheuerlein and L Bottura 2014 Supercond. Sci. Technol. 27 015005
[54] Woollam J A, Somoano R B and O'Connor P 1974 Phys. Rev. Lett. 32 712
[55] Cai S, Zhao J, Ni N, Guo J, Yang R, Wang P, Han J, Long S, Zhou Y, Wu Q, Qiu X, Xiang T, Cava R J and Sun L 2023 Nat. Commun. 14 3116
[56] Dong Q, Li Q, Li S, Shi X, Niu S, Liu S, Liu R, Liu B, Luo X, Si J, Lu W, Hao N, Sun Y and Liu B 2021 npj Quantum Mater. 6 20
[57] Debessai M, Hamlin J J and Schilling J S 2008 Phys. Rev. B 78 064519
[1] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[2] Stability and melting behavior of boron phosphide under high pressure
Wenjia Liang(梁文嘉), Xiaojun Xiang(向晓君), Qian Li(李倩), Hao Liang(梁浩), and Fang Peng(彭放). Chin. Phys. B, 2024, 33(4): 046201.
[3] Structure and superconducting properties of Ru1-xMox (x = 0.1—0.9) alloys
Yang Fu(付阳), Chunsheng Gong(龚春生), Zhijun Tu(涂志俊), Shangjie Tian(田尚杰), Shouguo Wang(王守国), and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(4): 047404.
[4] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[5] Effects of carrier density and interactions on pairing symmetry in a t2g model
Yun-Xiao Li(李云霄), Wen-Han Xi(西文翰), Zhao-Yang Dong(董召阳), Zi-Jian Yao(姚子健), Shun-Li Yu(于顺利), and Jian-Xin Li(李建新). Chin. Phys. B, 2024, 33(1): 017404.
[6] Ultrafast dynamics in photo-excited Mott insulator Sr3Ir2O7 at high pressure
Xia Yin(尹霞), Jianbo Zhang(张建波), Wang Dong(王东), Takeshi Nakagawa, Chunsheng Xia(夏春生), Caoshun Zhang(张曹顺), Weicheng Guo(郭伟程), Jun Chang(昌峻), and Yang Ding(丁阳). Chin. Phys. B, 2024, 33(1): 016103.
[7] Pressure induced insulator to metal transition in quantum spin liquid candidate NaYbS2
Yating Jia(贾雅婷), Chunsheng Gong(龚春生), Zhiwen Li(李芷文), Yixuan Liu(刘以轩), Jianfa Zhao(赵建发), Zhe Wang(王哲), Hechang Lei(雷和畅), Runze Yu(于润泽), and Changqing Jin(靳常青). Chin. Phys. B, 2023, 32(9): 096201.
[8] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[9] New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适),Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成). Chin. Phys. B, 2023, 32(9): 096302.
[10] Multi-band analysis on physical properties of superconducting FeSe films
Jian-Tao Che(车剑韬) and Chen-Xiao Ye(叶晨骁). Chin. Phys. B, 2023, 32(9): 097401.
[11] New MgO-H2O compounds at extreme conditions
Lanci Guo(郭兰慈) and Jurong Zhang(张车荣). Chin. Phys. B, 2023, 32(7): 076201.
[12] An ultrafast spectroscopy system for studying dynamic properties of superconductors under high pressure and low temperature conditions
Jian Zhu(朱健), Ye-Xi Li(李叶西), Deng-Man Feng(冯登满), De-Peng Su(苏德鹏), Dong-Niu Fan(范东牛),Song Yang(杨松), Chen-Xiao Zhao(赵辰晓), Gao-Yang Zhao(赵高扬), Liang Li(李亮),Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), and Qiang Zhou(周强). Chin. Phys. B, 2023, 32(6): 067801.
[13] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[14] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[15] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛). Chin. Phys. B, 2023, 32(4): 047201.
No Suggested Reading articles found!