Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 115201    DOI: 10.1088/1674-1056/ace768
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Compared discharge characteristics and film modifications of atmospheric pressure plasma jets with two different electrode geometries

Xiong Chen(陈雄)1, Xing-Quan Wang(王兴权)1,†, Bin-Xiang Zhang(张彬祥)2, Ming Yuan(袁明)1, and Si-Ze Yang(杨思泽)3
1 Institute of Low Temperature Plasma Technology, School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China;
2 The 722 Research Institute of CSSC, Wuhan 430205, China;
3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compared the discharge characteristics and the film modifications of atmospheric pressure plasma jets with needle-ring electrode (NRE) and double-ring electrode (DRE). The results show that jet with NRE has stronger electric field intensity and higher discharge power, making it present more reactive oxygen particles and higher electron temperature, but its discharge stability is insufficient. In contrast, the jet with DRE has uniform electric field distribution of lower field intensity, which allows it to maintain stable discharge over a wide range of applied voltages. Besides, the modification results show that the treatment efficiency of PET film by NRE is higher than that by DRE. These results provide a suitable atmospheric pressure plasma jets device selection scheme for polymer film processing process.
Keywords:  atmospheric pressure plasma jet      electrode structure      jet characteristics      modification  
Received:  26 June 2023      Revised:  11 July 2023      Accepted manuscript online:  14 July 2023
PACS:  52.25.-b (Plasma properties)  
  52.50.Dg (Plasma sources)  
  81.65.-b (Surface treatments)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11565003), the Jiangxi Province Academic Degree and Postgraduate Education and Teaching Reform Research Project (Grant No. JXYJG-2022-180), and the Scientific Research Base Project of Gannan Normal University (Grant No. 22wdxt01).
Corresponding Authors:  Xing-Quan Wang     E-mail:  wangxingquan@gnnu.edu.cn

Cite this article: 

Xiong Chen(陈雄), Xing-Quan Wang(王兴权), Bin-Xiang Zhang(张彬祥), Ming Yuan(袁明), and Si-Ze Yang(杨思泽) Compared discharge characteristics and film modifications of atmospheric pressure plasma jets with two different electrode geometries 2023 Chin. Phys. B 32 115201

[1] Chen S L, Cheng T, Chen Z Q, Chen X Y and Zhang G J 2021 Appl. Surf. Sci. 544 148956
[2] Sasmazel H T, Alazzawi M and Alsahib N K A 2021 Molecules 26 1665
[3] Fang Z, Shao T, Wang R X, Yang J and Zhang C 2016 Eur. Phys. J. D 70 79
[4] Zhou S N, Wen L, Tian Z H, Yan K C, Cheng J J, Xia L J, Wang H, Chu J R and Zou G 2020 Vacuum 182 109763
[5] Baniya H B, Guragain R P, Baniya B and Subedi D P 2020 Int. J. Polym. Sci. 2020 3860259
[6] Nakazawa K, Yamamoto S, Nakagawa E, Ogino A, Shimomura M and Iwata F 2020 Aip Adv. 10 095103
[7] Wang T, Wang J H, Wang S Q, Lv L, Li M and Shi L P 2021 Appl. Surf. Sci. 570 151258
[8] Wang T, Wang S Q, Wang J H, Chen S L, Li M, Shi L P and Zhang X Q 2021 Plasma Process Polym. 19 2100139
[9] Banerjee S, Adhikari E, Sapkota P, Sebastian A and Ptasinska S 2020 Materials 13 2931
[10] Yamamoto S, Nakazawa K, Ogino A and Iwata F 2022 J. Micromech. Microeng. 32 015006
[11] Li X C, Chen J Y, Lin X T, Wu J C, Wu K Y and Jia P Y 2020 Plasma Sources Sci. Technol. 29 065015
[12] Li X C, Chen J Y, Wu K Y, Wu J C, Zhang F R, Zhao N, Jia P Y, Yin Z Q, Wang Y J and Ren C H 2021 Phys. Plasmas 28 103507
[13] Zhang Y, Ishikawa K, Mozetič M, Tsutsumi T, Kondo H, Sekine M and Hori M 2019 Plasma Processes Polym. 16 1800175
[14] Sirotkin N, Khlyustova A, Titov V and Agafonov A 2020 Plasma Processes Polym. 17 2000012
[15] Wu S Q, Lu X P, Xiong Z L and Pan Y 2010 IEEE Trans. Plasma Sci. 38 3404
[16] Chen J Y, Zhao N, Wu J C, Wu K Y, Zhang F R, Ran J X, Jia P Y, Pang X X and Li X C 2022 Chin. Phys. B 31 065205
[17] Chen Z Q, Zhou B K, Zhang H, Hong L L, Zou C L, Li P, Zhao W D, Liu X D, Stepanova O and Kudryavtsev A A 2018 Chin. Phys. B 27 055202
[18] Yoshiki H and Saito T 2008 J. Vac. Sci. Technol. A 26 338
[19] Asghar A H and Galaly A R 2021 Appl. Sci. 11 6870
[20] Robert E, Darny T, Dozias S, Iseni S and Pouvesle J M 2015 Phys. Plasmas 22 122007
[21] Mangolini L, Orlov K, Kortshagen U, Heberlein J and Kogelschatz U 2002 Appl. Phys. Lett. 80 1722
[22] Zhang Q, Sun P, Feng H Q, Wang R X, Liang Y D, Zhu W D, Becker K H, Zhang J and Fang J 2012 J. Appl. Phys. 111 123305
[23] Shao X J, Zhang G J, Zhan J Y and Xu G M 2011 IEEE Trans. Plasma Sci. 39 3095
[24] Jin Y, Ren C H, Yang L and Zhang J L 2016 Plasma Sci. Technol. 18 168
[25] Yonemori S and Ono R 2014 J. Phys. D:Appl. Phys. 47 125401
[26] Bruggeman P and Brandenburg R 2013 J. Phys. D:Appl. Phys. 46 464001
[27] Zhang H B, Yuan F L and Chen Q 2020 IEEE Trans. Plasma Sci. 48 3621
[28] Yin G Q, Wang J J, Gao S S, Jiang Y B and Yuan Q H 2021 Chin. Phys. B 30 095204
[29] Joh H M, Choi J Y, Kim S J, Chung T H and Kang T H 2014 Sci. Rep. 4 6638
[30] Léveillé V and Coulombe S 2005 Plasma Sources Sci. Technol. 14 467
[31] Li X C, Lin X T, Wu K Y, Ren C H, Liu R and Jia P Y 2019 Plasma Sources Sci. Technol. 28 055006
[32] Demaude A, Inturri R, Satriano C, Leroy P and Reniers F 2021 Plasma Process Polym. 18 2100005
[1] Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion
Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(7): 078101.
[2] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[3] Modification of short-range repulsive interactions in ReaxFF reactive force field for Fe-Ni-Al alloy
Huaqiang Chen(陈华强), Lin Lang(稂林), Shuaiyu Yi(易帅玉), Jinlong Du(杜进隆), Guangdong Liu(刘广东), Lixia Liu(刘丽霞), Yufei Wang(王宇飞), Yuehui Wang(王悦辉), Huiqiu Deng(邓辉球), and Engang Fu(付恩刚). Chin. Phys. B, 2021, 30(8): 086110.
[4] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[5] Developing cold-resistant high-adhesive electronic substrate for WIMPs detectors at CDEX
Yuanyuan Liu(刘圆圆), Jianping Cheng(程建平), Pan Pang(庞盼), Bin Liao(廖斌), Bin Wu(吴彬), Minju Ying(英敏菊), Fengshou Zhang(张丰收), Lin Chen(陈琳), Shasha Lv(吕沙沙), Yandong Liu(刘言东), Tianxi Sun(孙天希). Chin. Phys. B, 2020, 29(4): 045203.
[6] Morphological modifications of C60 crystal rods under hydrothermal conditions
Ming-Run Du(杜明润), Shi-Xin Liu(刘士鑫), Jia-Jun Dong(董家君), Ze-Peng Li(李泽朋), Ming-Chao Wang (王明超), Tong Wei(魏通), Qing-Jun Zhou(周青军), Xiong Yang(杨雄), and Peng-fei Shen(申鹏飞). Chin. Phys. B, 2020, 29(12): 128102.
[7] The properties of surface nanobubbles formed on different substrates
Zheng-Lei Zou(邹正磊), Nan-Nan Quan(权楠楠), Xing-Ya Wang(王兴亚), Shuo Wang(王硕), Li-Min Zhou(周利民), Jun Hu(胡钧), Li-Juan Zhang(张立娟), Ya-Ming Dong(董亚明). Chin. Phys. B, 2018, 27(8): 086803.
[8] A simulation study of water property changes using geometrical alteration in SPC/E
Ming-Ru Li(李明儒), Nan Zhang(张楠), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(8): 083103.
[9] Characteristic plume morphologies of atmospheric Ar and He plasma jets excited by a pulsed microwave hairpin resonator
Zhao-Quan Chen(陈兆权), Ben-Kuan Zhou(周本宽), Huang Zhang(张煌), Ling-Li Hong(洪伶俐), Chang-Lin Zou(邹长林), Ping Li(李平), Wei-Dong Zhao(赵卫东), Xiao-Dong Liu(刘晓东), Olga Stepanova, A A Kudryavtsev. Chin. Phys. B, 2018, 27(5): 055202.
[10] Sterilization of mycete attached on the unearthed silk fabrics by an atmospheric pressure plasma jet
Rui Zhang(张锐), Jin-song Yu(於劲松), Jun Huang(黄骏), Guang-liang Chen(陈光良), Xin Liu(刘欣), Wei Chen(陈维), Xing-quan Wang(王兴权), Chao-rong Li(李超荣). Chin. Phys. B, 2018, 27(5): 055207.
[11] Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite
Zi-Rui Jia(贾梓睿), Zhen-Guo Gao(高振国), Di Lan(兰笛), Yong-Hong Cheng(成永红), Guang-Lei Wu(吴广磊), Hong-Jing Wu(吴宏景). Chin. Phys. B, 2018, 27(11): 117806.
[12] High-efficiency organic light-emitting diodes based on ultrathin blue phosphorescent modification layer
Yun-Ke Zhu(朱云柯), Jian Zhong(钟建), Shu-Ying Lei(雷疏影), Hui Chen(陈辉), Shuang-Shuang Shao(邵双双), Yu Lin(林宇). Chin. Phys. B, 2017, 26(8): 087302.
[13] The inelastic electron tunneling spectroscopy of edge-modified graphene nanoribbon-based molecular devices
Zong-Ling Ding(丁宗玲), Zhao-Qi Sun(孙兆奇), Jin Sun(孙进), Guang Li(李广), Fan-Ming Meng(孟凡明), Ming-Zai Wu(吴明在), Yong-Qing Ma(马永青), Long-Jiu Cheng(程龙玖), Xiao-Shuang Chen(陈效双). Chin. Phys. B, 2017, 26(2): 023103.
[14] Field emission properties of a-C and a-C:H films deposited on silicon surfaces modified with nickel nanoparticles
Jin-Long Jiang(姜金龙), Yu-Bao Wang(王玉宝), Qiong Wang(王琼), Hao Huang(黄浩), Zhi-Qiang Wei(魏智强), Jun-Ying Hao(郝俊英). Chin. Phys. B, 2016, 25(4): 048101.
[15] Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays
Ren-Wu Zhou(周仁武), Ru-Sen Zhou(周儒森), Jin-Xing Zhuang(庄金星), Jiang-Wei Li(李江炜), Mao-Dong Chen(陈茂冬), Xian-Hui Zhang(张先徽), Dong-Ping Liu(刘东平), Kostya (Ken) Ostrikov, Si-Ze Yang(杨思泽). Chin. Phys. B, 2016, 25(4): 045202.
No Suggested Reading articles found!