Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 043301    DOI: 10.1088/1674-1056/ac8342
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

A simple semiempirical model for the static polarizability of electronically excited atoms and molecules

Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski
Central Institute of Aviation Motors, Aviamotornaya 2, Moscow 111116, Russia
Abstract  We present a semiempirical analytical model for the static polarizability of electronically excited atoms and molecules, which requires very few readily accessible input data, including the ground-state polarizability, elemental composition, ionization potential, and spin multiplicities of excited and ground states. This very simple model formulated in a semiclassical framework is based on a number of observed trends in polarizability of electronically excited compounds. To adjust the model, both accurate theoretical predictions and reliable measurements previously reported elsewhere for a broad range of multielectron species in the gas phase are utilized. For some representative compounds of general concern that have not yet attracted sufficient research interest, the results of our multireference second-order perturbation theory calculations are additionally engaged. We show that the model we developed has reasonable (given the considerable uncertainties in the reference data) accuracy in predicting the static polarizability of electronically excited species of arbitrary size and excitation energy. These findings can be useful for many applications, where there is a need for inexpensive and quick assessments of the static gas-phase polarizability of excited electronic states, in particular, when building the complex nonequilibrium kinetic models to describe the observed optical refractivity (dielectric permittivity) of nonthermal reacting gas flows.
Keywords:  polarizability      electronic excitation      semiempirical model      quantum chemistry  
Received:  26 May 2022      Revised:  08 July 2022      Accepted manuscript online:  22 July 2022
PACS:  33.15.Kr (Electric and magnetic moments (and derivatives), polarizability, and magnetic susceptibility)  
  31.15.ap (Polarizabilities and other atomic and molecular properties)  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
  51.70.+f (Optical and dielectric properties)  
Fund: The work is supported by the grant of the Russian Science Foundation (project No. 22-29-00124).
Corresponding Authors:  Alexander S Sharipov     E-mail:  aleksandr.sharipov@phystech.edu,assharipov@ciam.ru

Cite this article: 

Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski A simple semiempirical model for the static polarizability of electronically excited atoms and molecules 2023 Chin. Phys. B 32 043301

[1] Buckingham A D and Long D A 1979 Phil. Trans. R. Soc. Lond. A 293 239
[2] Bonin K D and Kresin V V 1997 Electric-Dipole Polarizabilities of Atoms, Molecules, and Clusters (World Scientific, Singapore)
[3] Hohm U 2000 Vacuum 58 117
[4] Maroulis G 2012 Struct. Bond. 149 95
[5] Hohm U and Thakkar A J 2012 J. Phys. Chem. A 116 697
[6] Hickey A L and Rowley C N 2014 J. Phys. Chem. A 118 3678
[7] Sabirov D S 2014 RSC Adv. 4 44996
[8] Wu T, Kalugina Y N and Thakkar A J 2015 Chem. Phys. Lett. 635 257
[9] Xie C, Oganov A R, Dong D, Liu N, Li D and Debela T T 2015 Sci. Rep. 5 16769
[10] Loukhovitski B I, Sharipov A S and Starik A M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 125102
[11] Hermann J, DiStasio Jr R A and Tkatchenko A 2017 Chem. Rev. 117 4714
[12] Cherepanov V N, Kalugina Y N and Buldakov M A 2017 Interaction-induced Electric Properties of van der Waals Complexes SpringerBriefs in Electrical and Magnetic Properties of Atoms, Molecules, and Clusters (Ed. G. Maroulis) (Springer International Publishing)
[13] Sharipov A S, Loukhovitski B I and Starik A M 2017 J. Phys. B: At. Mol. Opt. Phys. 50 165101
[14] Schmitt M and Meerts L 2018 Frontiers and Advances in Molecular Spectroscopy (Elsevier) Chap 5, pp. 143-193
[15] Tang Z M, Yu Y M and Dong C Z 2018 Chin. Phys. B 27 063101
[16] Sharipov A S, Loukhovitski B I, Pelevkin A V, Kobtsev V D and Kozlov D N 2019 J. Phys. B: At. Mol. Opt. Phys. 52 045101
[17] Zapata J C and McKemmish L K 2020 J. Phys. Chem. A 124 7538
[18] Mei X, Zhou W, Zhong Z and Qiao H 2020 Chin. Phys. B 29 043101
[19] Tkatchenko A, Fedorov D V and Gori M 2021 J. Phys. Chem. Lett. 12 9488
[20] Beizaei N and Sauer S P A 2021 J. Phys. Chem. A 125 3785
[21] Grabarz A M and Ośmialowski B 2021 Molecules 26 7434
[22] Pluta T and Skrzyński G 2021 Adv. Quantum Chem. Vol. 83 (Elsevier) Chap 15, pp. 305-327
[23] Loukhovitski B I and Sharipov A S 2021 J. Phys. Chem. A 125 5117
[24] Sharipov A S, Loukhovitski B I and Loukhovitskaya E E 2022 Influence of Internal Degrees of Freedom on Electric and Related Molecular Properties SpringerBriefs in Electrical and Magnetic Properties of Atoms, Molecules, and Clusters (Ed. G. Maroulis) (Springer International Publishing)
[25] Sabirov D S, Tukhbatullina A A and Shepelevich I S 2022 ACS Earth Space Chem. 6 1
[26] Szabó P, Góger S, Charry J, Karimpour M R, Fedorov D V and Tkatchenko A 2022 Phys. Rev. Lett. 128 070602
[27] Saffman M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 202001
[28] Vo M N, Call M, Kowall C and Johnson J K 2019 Ind. Eng. Chem. Res. 58 19263
[29] Egan P F, Stone J A and Scherschligt J K 2019 J. Vac. Sci. Technol. A 37 031603
[30] Tropina A A, Wu Y, Limbach C M and Miles R B 2019 J. Phys. D: Appl. Phys. 53 105201
[31] Wu Y, Tropina A A, Miles R B and Limbach C M 2020 J. Phys. D: Appl. Phys. 53 485203
[32] Delone N B and Krainov V P 1988 Fundamentals of nonlinear optics of atomic gases (New York: Wiley)
[33] Gladkov S M and Koroteev N I 1990 Sov. Phys. Usp. 33 554
[34] Brand K P 1982 IEEE Trans. Electr. Insul. EI-17 451
[35] Volksen W, Miller R D and Dubois G 2010 Chem. Rev. 110 56
[36] Rabie M, Dahl D A, Donald S M A, Reiher M and Franck C M 2013 IEEE Trans Dielectr. Electr. Insul. 20 856
[37] Lodi L and Tennyson J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 133001
[38] Kaplan I G 2006 Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials (Hoboken, NJ: Wiley)
[39] Gould T and Bucko T 2016 J. Chem. Theory Comput. 12 3603
[40] Sharipov A S, Loukhovitski B I and Starik A M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 125103
[41] Urban M, Blaško M, Černušak I, Neogrády P and Pitoňak M 2018 Chem. Listy (in Czech and Slovak) 112 683
[42] Lane N F 1980 Rev. Mod. Phys. 52 29
[43] Itikawa Y 1997 Int. Rev. Phys. Chem. 16 155
[44] Hey J D 2013 J. Phys. B: At. Mol. Opt. Phys. 46 175702
[45] Krech R H and McFadden D L 1977 J. Am. Chem. Soc. 99 8402
[46] Ghanty T K and Ghosh S K 1993 J. Phys. Chem. 97 4951
[47] Hohm U 1994 J. Chem. Phys. 101 6362
[48] Chattaraj P K and Poddar A 1999 J. Phys. Chem. A 103 1274
[49] Hohm U 2000 J. Phys. Chem. A 104 8418
[50] Chattaraj P K, Roy D R, Elango M and Subramanian V 2005 J. Phys. Chem. A 109 9590
[51] Blair S A and Thakkar A J 2013 Chem. Phys. Lett. 556 346
[52] Sabirov D S, Garipova R R and Cataldo F 2018 Mol. Astrophys. 12 10
[53] Sharipov A S and Loukhovitski B I 2019 Struct. Chem. 30 2057
[54] Nelson Jr R D, Lide Jr D R and Maryott A A 1967 Selected values of electric dipole moments for molecules in the gas phase Tech. rep. National Standard Reference Data Series, National Bureau of Standards 10
[55] Lide D R (ed) 2010 CRC Handbook of Chemistry and Physics 90th Edition (CRC press)
[56] Hohm U 2013 J. Mol. Struct. 1054-1055 282
[57] Osipov A I and Uvarov A V 1992 Sov. Phys. Usp. 35 903
[58] Capitelli M, Ferreira C M, Gordiets B F and Osipov A I 2000 Plasma Kinetics in Atmospheric Gases (Springer Series on Atomic, Optical, and Plasma Physics Vol. 31) (Berlin: Springer-Verlag)
[59] Bultel A, Cheron B G, Bourdon A, Motapon O and Schneider I F 2006 Phys. Plasmas 13 043502
[60] Colonna G, D'Ammando G, Pietanza L D and Capitelli M 2015 Plasma Phys. Control. Fusion 57 014009
[61] Kadochnikov I N, Loukhovitski B I and Starik A M 2015 Plasma Sources Sci. Technol. 24 055008
[62] Celiberto R, Armenise I, Cacciatore M, Capitelli M, Esposito F, Gamallo P, Janev R K, Laganá A, Laporta V, Laricchiuta A, Lombardi A, Rutigliano M, Sayós R, Tennyson J and Wadehra J M 2016 Plasma Sources Sci. Technol. 25 033004
[63] Kadochnikov I N and Arsentiev I V 2018 J. Phys. D: Appl. Phys. 51 374001
[64] Lukhovitskii B I, Sharipov A S, Arsent'ev I V, Kuzmitskii V V and Penyazkov O G 2020 J. Eng. Phys. Thermophys. 93 850
[65] Kadochnikov I N, Loukhovitski B I and Starik A M 2013 Phys. Scr. 88 058306
[66] Cvetanovic R J 1974 Can. J. Chem. 52 1452
[67] Yankovsky V A and Manuilova R O 2006 Ann. Geophys. 24 2823
[68] Krasnopolsky V A 2011 Planet. Space Sci. 59 754
[69] Kirillov A S 2012 J. Atmos. Sol.-Terr. Phys. 81-82 9
[70] Askaryan G A 1966 JETP Letters (in Russian) 4 400
[71] Starik A M, Pelevkin A V and Titova N S 2017 Combust. Flame 176 81
[72] Azyazov V N 2009 Quantum Electron. 39 989
[73] Kathrotia T, Fikri M, Bozkurt M, Hartmann M, Riedel U and Schulz C 2010 Combust. Flame 157 1261
[74] Bystrov N, Emelianov A, Eremin A, Loukhovitski B, Sharipov A and Yatsenko P 2020 Combust. Flame 218 121
[75] Kamaratos E 2005 Cent. Eur. J. Chem. 3 387
[76] Fridman A 2008 Plasma Chemistry (Cambridge: Cambridge University Press)
[77] Shkurenkov I, Burnette D, Lempert WR and Adamovich I V 2014 Plasma Sources Sci. Technol. 23 065003
[78] Popov N A and Starikovskaia S M 2022 Prog. Energy Combust. Sci. 91 100928
[79] Starikovskiy A and Aleksandrov N 2013 Prog. Energy Combust. Sci. 39 61
[80] Starik A M, Loukhovitski B I, Sharipov A S and Titova N S 2015 Phil. Trans. R. Soc. A 373 20140341
[81] Ju Y, Lefkowitz J K, Reuter C B, Won S H, Yang X, Yang S, Sun W, Jiang Z and Chen Q 2016 Plasma Chem. Plasma Process 36 85
[82] Popov N A 2016 Plasma Sources Sci. Technol. 25 043002
[83] Starikovskaia S, Lacoste D A and Colonna G 2021 Eur. Phys. J. D 75 231
[84] Tropina A A, New-Tolley M R and Shneider M N 2020 AIAA Scitech 2020 Forum 1892
[85] Urban M and Sadlej A J 1990 Theor. Chim. Acta 78 189
[86] Ruud K, Mennucci B, Cammi R and Frediani L 2004 J. Comput. Methods Sci. Eng. 4 381
[87] Medved' M, Budzák Š and Pluta T 2015 Theor. Chem. Acc. 134 78
[88] Jacquemin D 2016 J. Chem. Theory Comput. 12 3993
[89] Kanis D R, Ratner M A and Marks T J 1994 Chem. Rev. 94 195
[90] Bredas J L, Cornil J, Beljonne D, Dos Santos D A and Shuai Z 1999 Acc. Chem. Res. 32 267
[91] Grozema F C, Telesca R, Jonkman H T, Siebbeles L D A and Snijders J G 2001 J. Chem. Phys. 115 10014
[92] DeFusco A, Minezawa N, Slipchenko L V, Zahariev F and Gordon M S 2011 J. Phys. Chem. Lett. 2 2184
[93] Pašteka L F, Melicherčik M, Neogrády P and Urban M 2012 Mol. Phys. 110 2219
[94] Hemmerling B and Kozlov D N 2003 Chem. Phys. 291 213
[95] Cao S Q, Su M G, Jiao Z H, Min Q, Sun D X, Ma P P, Wang K P and Dong C Z 2018 Phys. Plasmas 25 063302
[96] Bel'skii V M, Mikhailov A L, Rodionov A V and Sedov A A 2011 Combust. Expl. Shock Waves 47 639
[97] Li L, Hu H, Tang P, Chen B, Tian J and Jiang B 2021 IEEE Access 9 51595
[98] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[99] Snigirev S, Golovizin A, Tregubov D, Pyatchenkov S, Sukachev D, Akimov A, Sorokin V and Kolachevsky N 2014 Phys. Rev. A 89 012510
[100] Fan H, Kumar S, Sedlacek J, Kübler H, Karimkashi S and Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001
[101] Liu P L, Huang Y, Bian W, Shao H, Qian Y, Guan H, Tang L Y and Gao K L 2015 Chin. Phys. B 24 039501
[102] Zhou M and Tang L Y 2021 Chin. Phys. B 30 083102
[103] Wei Y F, Tang Z M, Li C B, Yang Y, Zou Y M, Cui K F and Huang X R 2022 Chin. Phys. B 31 083102
[104] Poulsen T D, Ogilby P R and Mikkelsen K V 1998 J. Phys. Chem. A 102 8970
[105] Trsic M, Uzhinov B M and Matzke P 1970 Mol. Phys. 18 851
[106] Andersson K and Sadlej A J 1992 Phys. Rev. A 46 2356
[107] Fuentealba P, Simon-Manso Y and Chattaraj P K 2000 J. Phys. Chem. A 104 3185
[108] Paleníková J, Kraus M, Neogrády P, Kellö V and Urban M 2008 Mol. Phys. 106 2333
[109] Sharipov A, Loukhovitski B and Pelevkin A 2021 Physical-Chemical Kinetics in Gas Dynamics (in Russian, English abstract) 22
[110] Talebpour A, Petit S and Chin S L 1999 Opt. Commun. 171 285
[111] Smid T S 1993 Radio Sci. 28 361
[112] Takahashi Y, Yamada K and Abe T 2014 J. Spacecraft Rockets 51 430
[113] Kuverova V V, Adamson S O, Berlin A A, Bychkov V L, Dmitriev A V, Dyakov Y A, Eppelbaum L V, Golubkov G V, Lushnikov A A, Manzhelii M I, Morozov A N, Nabiev S S, Shapovalov V L, Suvorova A V and Golubkov M G 2019 Adv. Space Res. 64 1876
[114] Golubkov G V, Manzhelii M I, Berlin A A, Eppelbaum L V, Lushnikov A A, Morozov I I, Dmitriev A V, Adamson S O, Dyakov Y A, Morozov A N and Golubkov M G 2020 Atmosphere 11 650
[115] Golubkov G V, Golubkov M G and Manzhelii M I 2014 Russ. J. Phys. Chem. B 8 103
[116] Kustova E V and Puzyreva L A 2009 Phys. Rev. E 80 046407
[117] Capitelli M, Bruno D, Colonna G, Catalfamo C and Laricchiuta A 2009 J. Phys. D: Appl. Phys. 42 194005
[118] Pineda D I and Chen J Y 2016 Effects of updated transport properties of singlet oxygen species on steady laminar flame simulations Western States Section Spring Technical Meeting of the Combustion Institute (Seattle, WA: Combustion Institute) pp. 139LF-0021
[119] Istomin V A and Kustova E V 2017 Chem. Phys. 485 125
[120] Chernov V E, Dorofeev D L, Kretinin I Y and Zon B A 2005 J. Phys. B: At. Mol. Opt. Phys. 38 2289
[121] Kamenski A A and Ovsiannikov V D 2014 J. Phys. B: At. Mol. Opt. Phys. 47 095002
[122] de Wergifosse M and Grimme S 2021 J. Phys. Chem. A 125 3841
[123] Paterson M J, Christiansen O, Jensen F and Ogilby P R 2006 Photochem. Photobiol. 82 1136
[124] Dorogan I V 2007 Russ. J. Gen. Chem. 78 774
[125] Ghosh S, Verma P, Cramer C J, Gagliardi L and Truhlar D G 2018 Chem. Rev. 118 7249
[126] Dong H, Jiang J, Wu Z, Dong C and Gaigalas G 2021 Chin. Phys. B 30 043103
[127] Stanton J F and Bartlett R J 1993 J. Chem. Phys. 98 7029
[128] Nanda K D and Krylov A I 2016 J. Chem. Phys. 145 204116
[129] Jansik B, Jonsson D, Salek P and Ågren H 2004 J. Chem. Phys. 121 7595
[130] Morgillo C, Korsaye F A, Ottochian A, Adamo C and Ciofini I 2021 Theor. Chem. Acc. 140 158
[131] Liang Y, Wu J, Li H, Tian R, Yuan C, Wang Y, Kudryavtsev A A, Zhou Z and Tian H 2019 Phys. Plasmas 26 043704
[132] Parasuk V, Neogrády P, Lischka H and Urban M 1996 J. Phys. Chem. 100 6325
[133] Jonsson D, Norman P and Ågren H 1997 Chem. Phys. 224 201
[134] Casida M E, Jamorski C, Casida K C and Salahub D R 1998 J. Chem. Phys. 108 4439
[135] Boyé-Péronne S, Gauyacq D and Liévin J 2014 J. Chem. Phys. 141 174317
[136] McDowell K 1976 J. Chem. Phys. 65 2518
[137] Kondrati'ev D A, Beigman D A and Vainshtein L A 2008 Bull. Lebedev Phys. Inst. 35 355
[138] Li Y, Vrbik J and Rothstein S M 2007 Chem. Phys. Lett. 445 345
[139] Grimes R M, Dupuis M and Lester Jr W A 1984 Chem. Phys. Lett. 28 247
[140] Minaev B F 2007 Russ. Chem. Rev. 76 989
[141] Pelevkin A V and Sharipov A S 2019 Plasma Chem. Plasma Process. 39 1533
[142] Cammi R, Frediani L, Mennucci B and Ruud K 2003 J. Chem. Phys. 119 5818
[143] Sharipov A S, Loukhovitski B I and Starik A M 2015 Eur. Phys. J. D 69 211
[144] Loukhovitski B I, Sharipov A S and Starik A M 2015 J. Phys. Chem. A 119 1369
[145] Adamov N M and Malykhanov Y B 1989 J. Struct. Chem. 29 790
[146] Hinchliffe A, Soscún H J, Mkadmh A and Abu-Awwad F M 2005 Int. J. Appl. Chem. 1 71
[147] Hinchliffe A, Soscún H J, Mkadmh A and Abu-Awwad F M 2006 J. Comput. Methods Sci. Eng. 6 165
[148] Jones M and Tennyson J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 045101
[149] Mérawa M and Rérat M 2001 Eur. Phys. J. D 17 329
[150] Mérawa M, Bégué D and Dargelos A 2003 J. Phys. Chem. A 107 9628
[151] Ghoneim N and Suppan P 1990 J. Chem. Soc. Faraday Trans. 86 2079
[152] Sinha H K, Thomson P C P and Yates K 1990 Can. J. Chem. 68 1507
[153] Thakkar A J and Lupinetti C 2005 Chem. Phys. Lett. 402 270
[154] Roos B O 1987 The complete active space self-consistent field method and its applications in electronic structure calculations Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry Part 2 Vol. 69 ed Lawley K P (John Wiley & Sons, Inc., Hoboken, NJ, USA.)
[155] Schmidt M W and Gordon M S 1998 Annu. Rev. Phys. Chem. 49 233
[156] Freidzon A and Tsybizova A 2017 CASSCF and Firefly: A tutorial (accessed may 2022)
[157] Granovsky A A 2011 J. Chem. Phys. 134 214113
[158] Kendall R A, Dunning Jr T H and Harrison R J 1992 J. Chem. Phys. 96 6796
[159] Sadlej A J 1988 Collec. Czech. Chem. Commun. 53 1995
[160] Kurtz H A, Stewart J J and Dieter K M 1990 J. Comput. Chem. 11 82
[161] Granovsky A A Firefly V 8.2.0 (accessed jan 2019)http://classic.chem.msu.su/gran/firefly/index.html
[162] Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M and Montgomery J A 1993 J. Comput. Chem. 14 1347
[163] Avramopoulos A, Ingamells V E, Papadopoulos M G and Sadlej A J 2001 J. Chem. Phys. 114 198
[164] Kalugina Y N and Thakkar A J 2015 Mol. Phys. 113 2939
[165] Schwerdtfeger P and Nagle J K 2019 Mol. Phys. 117 1200
[166] Smirnov B M 1980 Sov. Phys. Usp. 23 450
[167] Delone N B, Krainov V P and Shepelyanskii D L 1983 Sov. Phys. Usp. 26 551
[168] Cambi R, Cappelletti D, Liuti G and Pirani F 1991 J. Chem. Phys. 95 1852
[169] Adelman S A and Szabo A 1973 J. Chem. Phys. 58 687
[170] Lai Z, Zhang S, Gou Q and Li Y 2018 Phys. Rev. A 98 052503
[171] Barenblatt G I 1996 Scaling, self-similarity, and intermediate asymptotics (Cambridge University Press)
[172] Minaev B F and Minaeva V A 2001 Phys. Chem. Chem. Phys. 3 720
[173] Williams J H 1988 Chem. Phys. Lett. 147 585
[174] Hellmann H G A 1937 Einführung in die Quantenchemie (Deuticke: Leipzig and Wien, in German)
[175] Dmitrieva I K and Plindov G I 1983 Phys. Scr. 27 402
[176] Dmitrieva I K and Plindov G I 1986 J. Appl. Spectrosc. 44 4
[177] Fricke B 1986 J. Chem. Phys. 84 862
[178] Hati S and Datta D 1996 J. Phys. Chem. 100 4828
[179] Politzer P, Jin P and Murray J S 2002 J. Chem. Phys. 117 8197
[180] Reed III T M 1955 J. Phys. Chem. 59 428
[181] Blair S A and Thakkar A J 2014 J. Chem. Phys. 141 074306
[182] Chandrakumar K R S, Ghanty T K and Ghosh S K 2004 J. Phys. Chem. A 108 6661
[183] Li X B, Wang H Y, Lv R, Wu W D, Luo J S and Tang Y J 2009 J. Phys. Chem. A 113 10335
[184] Gupta K, Ghanty T K and Ghosh S K 2012 J. Phys. Chem. A 116 6831
[185] Afeefy H Y, Liebman J F and Stein S E 2021 NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov) chap Neutral Thermochemical Data
[186] Johnson III R D 2010 NIST computational chemistry comparison and benchmark database, NIST standard reference database number 101 release 15a
[187] Bravaya K B, Kostko O, Dolgikh S, Landau A, Ahmed M and Krylov A I 2010 J. Phys. Chem. A 114 12305
[188] Gurvich L V, Veyts I V and Alcock C B 1989 Thermodynamics Properties of Individual Substances (New York: Hemisphere Pub. Co., New York)
[189] Roos B O, Andersson K and Fulscher M P 1992 Chem. Phys. Lett. 192 5
[190] Boldyrev A I, Simons J and von R Schleyer P 1993 J. Chem. Phys. 99 8793
[191] Rubio M, Merchán M, Ortí E and Roos B O 1994 Chem. Phys. 179 395
[192] Moriyama H, Wasada-Tsutsui Y, Sekiya M and Tatewaki H 2003 J. Chem. Phys. 118 5413
[193] Kvålseth T O 1985 Am. Stat. 39 219
[194] Themelis S I and Nicolaides C A 1995 Phys. Rev. A 52 2439
[195] Ye A P and Wang G F 2008 Phys. Rev. A 78 014502
[196] Yerokhin V A, Buhmann S Y, Fritzsche S and Surzhykov A 2016 Phys. Rev. A 94 032503
[1] Dynamic polarizabilities of the clock states of Al+
Yuan-Fei Wei(魏远飞), Zhi-Ming Tang(唐志明), Cheng-Bin Li(李承斌), Yang Yang(杨洋), Ya-Ming Zou(邹亚明), Kai-Feng Cui(崔凯枫), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2022, 31(8): 083102.
[2] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[3] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[4] Peptide backbone-copper ring structure: A molecular insight into copper-induced amyloid toxicity
Jing Wang(王静), Hua Li(李华), Xiankai Jiang(姜先凯), Bin Wu(吴斌), Jun Guo(郭俊), Xiurong Su(苏秀榕), Xingfei Zhou(周星飞), Yu Wang(王宇), Geng Wang(王耿), Heping Geng(耿和平), Zheng Jiang(姜政), Fang Huang(黄方), Gang Chen(陈刚), Chunlei Wang(王春雷), Haiping Fang(方海平), and Chenqi Xu(许琛琦). Chin. Phys. B, 2022, 31(10): 108702.
[5] Differentiable programming and density matrix based Hartree-Fock method
Hong-Bin Ren(任宏斌), Lei Wang(王磊), and Xi Dai(戴希). Chin. Phys. B, 2021, 30(6): 060701.
[6] Influences of adsorptions of some inorganic molecules on electronic, optical, and thermodynamic properties of Mg12O12 nanocage: A computational approach
Asghar Mohammadi Hesari, Hamid Reza Shamlouei. Chin. Phys. B, 2018, 27(8): 084210.
[7] First principles study of ceramic materials (IVB group carbides) under ultrafast laser irradiation
Nan-Lin He(何南燐), Xin-Lu Cheng(程新路), Hong Zhang(张红), Gai-Qin Yan(闫改琴), Jia Zhang(张佳). Chin. Phys. B, 2018, 27(3): 036301.
[8] Influence of alkali metal superoxides on structure, electronic, and optical properties of Be12O12 nanocage: Density functional theory study
Ali Raoof Toosi, Hamid Reza Shamlouei, Asghar Mohammadi Hesari. Chin. Phys. B, 2016, 25(9): 094220.
[9] Differential cross sections for electron impact excitation of molecular hydrogen using the momentum-space multichannel optical method
Yuan-Cheng Wang(王远成), Jia Ma(马佳), Ya-Jun Zhou(周雅君). Chin. Phys. B, 2016, 25(4): 043401.
[10] Tune-out wavelengths for the alkaline-metal atoms
Wei-Wei Yu(于伟威), Rong-Mei Yu(于荣梅), Yong-Jun Cheng(程勇军) and Ya-Jun Zhou(周雅君). Chin. Phys. B, 2016, 25(2): 023101.
[11] Ab initio investigation of photoinduced non-thermal phase transition in β -cristobalite
Shi-Quan Feng(冯世全), Hua-Ping Zang(臧华平), Yong-Qiang Wang(王永强), Xin-Lu Cheng(程新路), Jin-Sheng Yue(岳金胜). Chin. Phys. B, 2016, 25(1): 016701.
[12] Correlation between the magic wavelengths and the polarization direction of the linearly polarized laser in the Ca+ optical clock
Liu Pei-Liang (刘培亮), Huang Yao (黄垚), Bian Wu (边武), Shao Hu (邵虎), Qian Yuan (钱源), Guan Hua (管桦), Tang Li-Yan (唐丽艳), Gao Ke-Lin (高克林). Chin. Phys. B, 2015, 24(3): 039501.
[13] Static electric dipole polarizability of lithium atom in Debye plasmas
Ning Li-Na (宁丽娜), Qi Yue-Ying (祁月盈). Chin. Phys. B, 2012, 21(12): 123201.
[14] Chiral asymmetry of anti-symmetric coordinates studied by the Raman differential bond polarizability of S-phenylethylamine
Shen Hong-Xia (沈红霞), Wu Guo-Zhen (吴国祯), Wang Pei-Jie (王培杰). Chin. Phys. B, 2012, 21(12): 123301.
[15] Effects of the structural order of canthaxanthin on the Raman scattering cross section in various solvents: A study by Raman spectroscopy and ab initio calculation
Wu Nan-Nan (吴楠楠), Li Zuo-Wei (里佐威), Liu Jing-Yao (刘靖尧), Ou Yang Shun-Li (欧阳顺利). Chin. Phys. B, 2012, 21(10): 103101.
No Suggested Reading articles found!