Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 040201    DOI: 10.1088/1674-1056/ab6dca
GENERAL   Next  

Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation

Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳)
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  The nonlocal symmetries are derived for the Korteweg-de Vries-negative-order Korteweg-de Vries equation from the Painlevé truncation method. The nonlocal symmetries are localized to the classical Lie point symmetries for the enlarged system by introducing new dependent variables. The corresponding similarity reduction equations are obtained with different constant selections. Many explicit solutions for the integrable equation can be presented from the similarity reduction.
Keywords:  nonlocal symmetry      symmetry reduction      Lie point symmetry      KdV-nKdV equation  
Received:  05 December 2019      Revised:  21 January 2020      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  04.20.Jb (Exact solutions)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11471215).
Corresponding Authors:  Heng-Chun Hu     E-mail:  hhengchun@163.com

Cite this article: 

Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳) Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation 2020 Chin. Phys. B 29 040201

[1] Korteweg D J and G de Vries 1895 Lond. Edinb. Dubl. Phil. Mag. 240 422
[2] Bluman G W and Anco S C 2002 Symmetry and Integration Methods for Differential Equations (New York: Springer-Verlag)
[3] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209
[4] Ren B, Cheng X P and Lin J 2016 Nonlinear Dyn. 86 1855
[5] Ren B and Lin J 2016 Z. Naturforsch. A 71 557
[6] Gao X N, Lou S Y and Tang X Y 2013 J. High Energy Phys. 5 029
[7] Hu H C, Hu X and Feng B F 2016 Z. Naturforsch. A 71 235
[8] Liu S J, Tang X Y and Lou S Y 2018 Chin. Phys. B 27 060201
[9] Liu X Z, Yu J, Ren B and Yang J R 2015 Chin. Phys. B 24 010203
[10] Cheng X P, Lou S Y and Chen C L and Tang X Y 2014 Phys. Rev. E 89 043202
[11] Cheng W G, Li B and Chen Y 2015 Commun. Nonlinear Sci. Numer. Simulat. 29 198
[12] Ren B 2015 Phys. Scr. 90 065206
[13] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209
[14] Cheng W G and Li B 2016 Z. Naturforsch. A 71 351
[15] Liu Y K and Li B 2016 Chin. J. Phys. 54 718
[16] Han P and Lou S Y 1997 Acta Phys. Sin. 46 1249 (in Chinese)
[17] Hu X R and Chen Y 2015 Chin. Phys. B 24 030201
[18] Huang L L and Chen Y 2016 Chin. Phys. B 25 078502
[19] Ren B 2015 Chin. Phys. B 22 110306
[20] Wazwaz A M 2017 Proc. Nat. Acad. Sci. India Sect. A 87 291
[21] Wazwaz A M and Xu G Q 2016 Math. Method Appl. Sci. 39 661
[22] Wazwaz A M 2019 Appl. Math. Lett. 88 1
[23] Wazwaz A M 2018 Math. Method Appl. Sci. 41 80
[24] Verosky J M 1991 J. Math. Phys. 32 1733
[25] Olver P J 1977 J. Math. Phys. 18 1212
[26] Cheng W G and Xu T Z 2019 Appl. Math. Lett. 94 21
[27] Lou S Y 2013 arXiv: 13081140v1[nlin.SI]
[28] Ren B 2017 Commun. Nonlinear Sci. Numer. Simulat. 42 456
[29] Ren B and Lin J 2018 J. Korean Phys. Soc. 73 538
[30] Ren B 2016 AIP Adv. 6 085205
[1] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[2] Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation
Xiao-Bo Wang(王晓波), Man Jia(贾曼), and Sen-Yue Lou(楼森岳). Chin. Phys. B, 2021, 30(1): 010501.
[3] Multiple Darboux-Bäcklund transformations via truncated Painlevé expansion and Lie point symmetry approach
Shuai-Jun Liu(刘帅君), Xiao-Yan Tang(唐晓艳), Sen-Yue Lou(楼森岳). Chin. Phys. B, 2018, 27(6): 060201.
[4] Nonlocal symmetry and exact solutions of the (2+1)-dimensional modified Bogoyavlenskii-Schiff equation
Li-Li Huang(黄丽丽), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(6): 060201.
[5] Nonlocal symmetries, consistent Riccati expansion integrability, and their applications of the (2+1)-dimensional Broer-Kaup-Kupershmidt system
Hu Xiao-Rui (胡晓瑞), Chen Yong (陈勇). Chin. Phys. B, 2015, 24(9): 090203.
[6] New solutions from nonlocal symmetry of the generalized fifth order KdV equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博). Chin. Phys. B, 2015, 24(8): 080202.
[7] Nonlocal symmetries and negative hierarchies related to bilinear Bäcklund transformation
Hu Xiao-Rui (胡晓瑞), Chen Yong (陈勇). Chin. Phys. B, 2015, 24(3): 030201.
[8] Explicit solutions from residual symmetry of the Boussinesq equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博). Chin. Phys. B, 2015, 24(3): 030202.
[9] Residual symmetry reductions and interaction solutions of the (2+1)-dimensional Burgers equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博), Yang Jian-Rong (杨建荣). Chin. Phys. B, 2015, 24(1): 010203.
[10] New interaction solutions of the Kadomtsev-Petviashvili equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博), Yang Jian-Rong (杨建荣). Chin. Phys. B, 2014, 23(10): 100201.
[11] Nonlocal symmetry, optimal systems, and explicit solutions of the mKdV equation
Xin Xiang-Peng (辛祥鹏), Miao Qian (苗倩), Chen Yong (陈勇). Chin. Phys. B, 2014, 23(1): 010203.
[12] A symmetry-preserving difference scheme for high dimensional nonlinear evolution equations
Xin Xiang-Peng (辛祥鹏), Chen Yong (陈勇), Wang Yun-Hu (王云虎). Chin. Phys. B, 2013, 22(6): 060201.
[13] New exact solutions of Einstein–Maxwell equations for magnetostatic fields
Nisha Goyal, R. K. Gupta. Chin. Phys. B, 2012, 21(9): 090401.
[14] Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices
Xia Li-Li(夏丽莉) and Chen Li-Qun(陈立群) . Chin. Phys. B, 2012, 21(7): 070202.
[15] A new (2+1)-dimensional supersymmetric Boussinesq equation and its Lie symmetry study
Wang You-Fa(王友法), Lou Sen-Yue(楼森岳), and Qian Xian-Min(钱贤民). Chin. Phys. B, 2010, 19(5): 050202.
No Suggested Reading articles found!