Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 100201    DOI: 10.1088/1674-1056/23/10/100201
GENERAL   Next  

New interaction solutions of the Kadomtsev-Petviashvili equation

Liu Xi-Zhong (刘希忠)a, Yu Jun (俞军)a, Ren Bo (任博)a, Yang Jian-Rong (杨建荣)b
a Institute of Nonlinear Science, Shaoxing University, Shaoxing 312000, China;
b Department of Physics and Electronics, Shangrao Normal University, Shangrao 334001, China
Abstract  The residual symmetry relating to the truncated Painlevé expansion of the Kadomtsev-Petviashvili (KP) equation is nonlocal, which is localized in this paper by introducing multiple new dependent variables. By using the standard Lie group approach, new symmetry reduction solutions for the KP equation are obtained based on the general form of Lie point symmetry for the prolonged system. In this way, the interaction solutions between solitons and background waves are obtained, which are hard to find by other traditional methods.
Keywords:  Kadomtsev-Petviashvili equation      localization procedure      residual symmetry      Bäcklund transformation      symmetry reduction solution  
Received:  24 January 2014      Revised:  08 April 2013      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  47.35.Fg (Solitary waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11347183, 11275129, 11305106, 11405110, and 11365017) and the Natural Science Foundation of Zhejiang Province of China (Grant Nos. Y7080455 and LQ13A050001).
Corresponding Authors:  Yu Jun     E-mail:  junyu@usx.edu.cn
About author:  02.30.Jr; 02.30.Ik; 05.45.Yv; 47.35.Fg

Cite this article: 

Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博), Yang Jian-Rong (杨建荣) New interaction solutions of the Kadomtsev-Petviashvili equation 2014 Chin. Phys. B 23 100201

[27]Cheng Y and Li Y S 1991 Phys. Lett. A 157 22
[1]Miller R E and Tadmor E B 2009 Modell. Simul. Mater Sci. Eng. 17 053001
[28]Zeng Y B, Ma W X and Lin R L 2000 J. Math. Phys. 41 5453
[1] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[2] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
[3] Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation
Xiao-Bo Wang(王晓波), Man Jia(贾曼), and Sen-Yue Lou(楼森岳). Chin. Phys. B, 2021, 30(1): 010501.
[4] Lump-type solutions of a generalized Kadomtsev-Petviashvili equation in (3+1)-dimensions
Xue-Ping Cheng(程雪苹), Wen-Xiu Ma(马文秀), Yun-Qing Yang(杨云青). Chin. Phys. B, 2019, 28(10): 100203.
[5] Residual symmetry, interaction solutions, and conservation laws of the (2+1)-dimensional dispersive long-wave system
Ya-rong Xia(夏亚荣), Xiang-peng Xin(辛祥鹏), Shun-Li Zhang(张顺利). Chin. Phys. B, 2017, 26(3): 030202.
[6] New solutions from nonlocal symmetry of the generalized fifth order KdV equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博). Chin. Phys. B, 2015, 24(8): 080202.
[7] Explicit solutions from residual symmetry of the Boussinesq equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博). Chin. Phys. B, 2015, 24(3): 030202.
[8] Residual symmetry reductions and interaction solutions of the (2+1)-dimensional Burgers equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博), Yang Jian-Rong (杨建荣). Chin. Phys. B, 2015, 24(1): 010203.
[9] Bäcklund transformations for the Burgers equation via localization of residual symmetries
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博), Yang Jian-Rong (杨建荣). Chin. Phys. B, 2014, 23(11): 110203.
[10] CONDITIONAL SIMILARITY REDUCTION APPROACH: JIMBO--MIWA EQUATION
Lou Sen-yue (楼森岳), Tang Xiao-yan (唐晓艳). Chin. Phys. B, 2001, 10(10): 897-901.
No Suggested Reading articles found!