Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 030202    DOI: 10.1088/1674-1056/24/3/030202
GENERAL Prev   Next  

Explicit solutions from residual symmetry of the Boussinesq equation

Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博)
Institute of Nonlinear Science, Shaoxing University, Shaoxing 312000, China
Abstract  The Bäcklund transformation related symmetry is nonlocal, which is hard to be applied in constructing solutions for nonlinear equations. In this paper, the residual symmetry of the Boussinesq equation is localized to Lie point symmetry by introducing multiple new variables. By applying the general Lie point method, two main results are obtained: a new type of Bäcklund transformation is derived, from which new solutions can be generated from old ones; the similarity reduction solutions as well as corresponding reduction equations are found. The localization procedure provides an effective way to investigate interaction solutions between nonlinear waves and solitons.
Keywords:  Boussinesq equation      localization procedure      residual symmetry      symmetry reduction solution  
Received:  23 August 2014      Revised:  12 October 2014      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  47.35.Fg (Solitary waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11347183, 11405110, 11275129, and 11305106) and the Natural Science Foundation of Zhejiang Province of China (Grant Nos. Y7080455 and LQ13A050001).
Corresponding Authors:  Liu Xi-Zhong     E-mail:  liuxizhong123@163.com

Cite this article: 

Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博) Explicit solutions from residual symmetry of the Boussinesq equation 2015 Chin. Phys. B 24 030202

[1] Lie S 1891 Vorlesungen ber Differentialgleichungen mit Bekannten Infinitesimalen Transformationen (Leipzig: Teuber) (reprinted by Chelsea: New York; 1967)
[2] Olver P J 1993 Application of Lie Groups to Differential Equation, Graduate Texts in Mathematics (2nd ed.) (NewYork: Springer-Verlag)
[3] Bluman G W and Kumei S 1989 Symmetries and Differential Equation, Appl. Math. Sci. (Berlin: Springer-Verlag)
[4] Tang X Y and Lou S Y 2002 Chin. Phys. Lett. 19 1
[5] Hu X R, Chen Y and Huang F 2010 Chin. Phys. B 19 080203
[6] Liu X Z 2010 Chin. Phys. B 19 080202
[7] Jing J C and Li B 2013 Chin. Phys. B 22 010303
[8] Liu X Z 2010 J. Phys. A: Math. Gen. 43 265203
[9] Lou S Y and Hu X B 1997 J. Phys. A: Math. Gen. 30 95
[10] Gao X N, Lou S Y and Tang X Y 2013 JHEP 5 029
[11] Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607
[12] Xin X P and Chen Y 2013 Chin. Phys. Lett. 30 100202
[13] Boussinesq J 1871 Comptes Rendus C. R. Acad. Sci Paris 72 755
[14] Boussinesq J 1872 J. Pure Appl. 7 55
[15] Whitham G B 1974 Linear and Nonlinear Waves (New York: Wiley)
[16] Toda M 1975 Phys. Rep. 18 1
[17] Zabusky N J 1967 A Synergetic Approach to Problems of Nonlinear Dispersive Wave Propagation and Interaction (New York: Academic Press)
[18] Zakharov V E 1974 Sov. Phys. JETP 38 108
[19] Infeld E and Rowlands G 1990 Nonlinear Waves, Solitons and Chaos (Cambridge: Cambridge University Press)
[20] Scott A C 1975 The Application of Bäcklund Transforms to Physical Problems (Berlin: Springer)
[21] Lou S Y 2013 Residual Symmetries and Bäcklund Transformations arXiv:1308.1140v1
[22] Cao C W and Geng X G 1990 J. Phys. A: Math. Gen. 23 4117
[23] Cheng Y and Li Y S 1991 Phys. Lett. A 157 22
[24] Zeng Y B, Ma W X and Lin R L 2000 J. Math. Phys. 41 5453
[1] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[2] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
[3] Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation
Xiao-Bo Wang(王晓波), Man Jia(贾曼), and Sen-Yue Lou(楼森岳). Chin. Phys. B, 2021, 30(1): 010501.
[4] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[5] Truncated series solutions to the (2+1)-dimensional perturbed Boussinesq equation by using the approximate symmetry method
Xiao-Yu Jiao(焦小玉). Chin. Phys. B, 2018, 27(10): 100202.
[6] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[7] Residual symmetry, interaction solutions, and conservation laws of the (2+1)-dimensional dispersive long-wave system
Ya-rong Xia(夏亚荣), Xiang-peng Xin(辛祥鹏), Shun-Li Zhang(张顺利). Chin. Phys. B, 2017, 26(3): 030202.
[8] Soliton and rogue wave solutions of two-component nonlinear Schrödinger equation coupled to the Boussinesq equation
Cai-Qin Song(宋彩芹), Dong-Mei Xiao(肖冬梅), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2017, 26(10): 100204.
[9] A new model for algebraic Rossby solitary waves in rotation fluid and its solution
Chen Yao-Deng (陈耀登), Yang Hong-Wei (杨红卫), Gao Yu-Fang (高玉芳), Yin Bao-Shu (尹宝树), Feng Xing-Ru (冯兴如). Chin. Phys. B, 2015, 24(9): 090205.
[10] New solutions from nonlocal symmetry of the generalized fifth order KdV equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博). Chin. Phys. B, 2015, 24(8): 080202.
[11] Singular and non-topological soliton solutions for nonlinear fractional differential equations
Ozkan Guner. Chin. Phys. B, 2015, 24(10): 100201.
[12] Residual symmetry reductions and interaction solutions of the (2+1)-dimensional Burgers equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博), Yang Jian-Rong (杨建荣). Chin. Phys. B, 2015, 24(1): 010203.
[13] Non-autonomous discrete Boussinesq equation:Solutions and consistency
Nong Li-Juan (农丽娟), Zhang Da-Juan (张大军). Chin. Phys. B, 2014, 23(7): 070202.
[14] A novel (G’/G)-expansion method and its application to the Boussinesq equation
Md. Nur Alam, Md. Ali Akbar, Syed Tauseef Mohyud-Din. Chin. Phys. B, 2014, 23(2): 020203.
[15] Bäcklund transformations for the Burgers equation via localization of residual symmetries
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博), Yang Jian-Rong (杨建荣). Chin. Phys. B, 2014, 23(11): 110203.
No Suggested Reading articles found!