Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 094301    DOI: 10.1088/1674-1056/26/9/094301

Wideband dispersion removal and mode separation of Lamb waves based on two-component laser interferometer measurement

Yan-Feng Xu(徐琰锋), Wen-Xiang Hu(胡文祥)
Institute of Acoustics, Tongji University, Shanghai 200092, China

Ultrasonic Lamb waves are considered as a sensitive and effective tool for nondestructive testing and evaluation of plate-like or pipe-like structures. The nature of multimode and dispersion causes the wave packets to spread, and the modes overlap in both time and frequency domains as they propagate through the structures. By using a two-component laser interferometer technique, in combination with a priori knowledge of the dispersion characteristics and wave structure information of Lamb wave modes, a two-component signal processing technique is presented for implementing dispersion removal and mode separation simultaneously for two modes mixture signals of Lamb waves. The proposed algorithm is first processed and verified using synthetic Lamb wave signals. Then, the two-component displacements test experiment is conducted using different aluminum plate samples. Moreover, we confirm the effectiveness and robustness of this method.

Keywords:  Lamb wave      dispersion compensation      mode separation      two-component measurement  
Received:  07 April 2017      Revised:  18 May 2017      Published:  05 September 2017
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  

Project supported by the National Natural Science Foundation of China (Grant No. 11374230).

Corresponding Authors:  Wen-Xiang Hu     E-mail:

Cite this article: 

Yan-Feng Xu(徐琰锋), Wen-Xiang Hu(胡文祥) Wideband dispersion removal and mode separation of Lamb waves based on two-component laser interferometer measurement 2017 Chin. Phys. B 26 094301

[1] Rose J L 2002 J. Press. Vessel Technol.-Trans. ASME 124 273
[2] Rose J L, Pilarski A and Ditri J J 1993 J. Reinf. Plast. Compos. 12 536
[3] Cawley P and Alleyne D 1996 Ultrasonics 34 287
[4] Dixon S, Burrows S E, Dutton B and Fan Y 2011 Ultrasonics 51 7
[5] Benmeddour F, Grondel S, Assaad J and Moulin E 2008 NDT E Int. 41 1
[6] Maslov K and Kundu T 1997 Ultrasonics 35 141
[7] Terrien N, Royer D, Lepoutre F and Deon A 2007 Ultrasonics 46 251
[8] Lee J H and Lee S J 2009 NDT E Int. 42 222
[9] Valle C and Littles J W 2002 Ultrasonics 39 535
[10] Michaels J E and Michaels T E 2007 Wave Motion 44 482
[11] Lu Y, Ye L, Su Z and Yang C 2008 NDT E Int. 41 59
[12] Santos M and Perdigao J 2005 NDT E Int. 38 561
[13] Wilcox P D, Lowe M J S and Cawley P 2001 NDT E Int. 34 1
[14] Li J and Rose J L 2001 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48 761
[15] Jia X 1997 J. Acoust. Soc. Am. 101 834
[16] Alleyne D N and Cawley P 1992 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39 381
[17] Morvan B, Wilkie-Chancellier N, Duflo H, Tinel A and Duclos J 2003 J. Acoust. Soc. Am. 113 1417
[18] Alleyne D N, Pialucha T P and Cawley P 1993 Ultrasonics 31 201
[19] Xu K, Ta D, Hu B, Laugier P and Wang W 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 997
[20] Ing R K and Fink M 1998 Ultrasonics 36 179
[21] Wilcox P D 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 419
[22] Legg M, Yücel M K, Kappatos V, Selcuk C and Gan T 2015 Ultrasonics 62 35
[23] Tian Z and Yu L 2004 J. Intell. Mater. Syst. Struct. 25 1107
[24] Kim C Y and Park K J 2015 NDT E Int. 74 15
[25] Xu K, Ta D, Moilanen P and Wang W 2012 J. Acoust. Soc. Am. 131 2714
[26] Cand A, Monchalin J P and Jia X 1994 Appl. Phys. Lett. 64 414
[27] Rose J L 2004 Ultrasonic Waves in Solid Media (Cambridge) p. 200
[1] Location of micro-cracks in plates using time reversed nonlinear Lamb waves
Yaoxin Liu(刘尧鑫), Aijun He(何爱军), Jiehui Liu(刘杰惠), Yiwei Mao(毛一葳), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2020, 29(5): 054301.
[2] Micro-crack detection of nonlinear Lamb wave propagation in three-dimensional plates with mixed-frequency excitation
Wei-Guang Zhu(祝伟光), Yi-Feng Li(李义丰), Li-Qiang Guan(关立强), Xi-Li Wan(万夕里), Hui-Yang Yu(余辉洋), Xiao-Zhou Liu(刘晓宙). Chin. Phys. B, 2020, 29(1): 014302.
[3] Lamb waves topological imaging combining with Green's function retrieval theory to detect near filed defects in isotropic plates
Hui Zhang(张辉), Hai-Yan Zhang(张海燕), Meng-Yun Xu(徐梦云), Guo-Peng Fan(范国鹏), Wen-Fa Zhu(朱文发), Xiao-Dong Chai(柴晓冬). Chin. Phys. B, 2019, 28(7): 074301.
[4] Lamb wave signal selective enhancement by an improved design of meander-coil electromagnetic acoustic transducer
Wen-Xiu Sun(孙文秀), Guo-Qiang Liu(刘国强), Hui Xia(夏慧), Zheng-Wu Xia(夏正武). Chin. Phys. B, 2018, 27(8): 084301.
[5] Generation of narrowband Lamb waves based on the Michelson interference technique
Tian-Ming Ye(叶天明), Yan-Feng Xu(徐琰锋), Wen-Xiang Hu(胡文祥). Chin. Phys. B, 2018, 27(5): 054301.
[6] Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers
Ming-Liang Li(李明亮), Ming-Xi Deng(邓明晰), Guang-Jian Gao(高广健). Chin. Phys. B, 2016, 25(12): 124301.
[7] Quantitative damage imaging using Lamb wave diffraction tomography
Hai-Yan Zhang(张海燕), Min Ruan(阮敏), Wen-Fa Zhu(朱文发), Xiao-Dong Chai(柴晓冬). Chin. Phys. B, 2016, 25(12): 124304.
[8] Interface-guided mode of Lamb waves in a two-dimensional phononic crystal plate
Huang Ping-Ping, Yao Yuan-Wei, Wu Fu-Gen, Zhang Xin, Li Jing, Hu Ai-Zhen. Chin. Phys. B, 2015, 24(5): 054301.
[9] Superwide-angle acoustic propagations above the critical angles of the Snell law in liquid–solid superlattice
Zhang Sai, Zhang Yu, Gao Xiao-Wei. Chin. Phys. B, 2014, 23(12): 124301.
[10] Dispersion compensation in an open-loop all-optical chaotic communication system
Liu Hui-Jie,Ren Bin,Feng Jiu-Chao. Chin. Phys. B, 2012, 21(4): 040501.
[11] Dispersion compensation for an ultrathin metal film using LCD–CCD system
Dai Yu, Zhang Jian-Xu. Chin. Phys. B, 2012, 21(10): 104203.
[12] Piezoelectric transducer parameter selection for exciting a single mode from multiple modes of Lamb waves
Zhang Hai-Yan, Yu Jian-Bo. Chin. Phys. B, 2011, 20(9): 094301.
[13] Acoustic band pinning in the phononic crystal plates of anti-symmetric structure
Cai Chen, Zhu Xue-Feng, Chen Qian, Yuan Ying, Liang Bin, Cheng Jian-Chun. Chin. Phys. B, 2011, 20(11): 116301.
[14] Polarization mode dispersion compensation in a novel dual polarization differential quadrature phase shift keying system
Qin Jiang-Xing, Xi Li-Xia, Zhang Xiao-Guang, Tian Feng. Chin. Phys. B, 2011, 20(11): 114201.
[15] Investigation of a silicon-based one-dimensional phononic crystal plate via the super-cell plane wave expansion method
Zhu Xue-Feng, Liu Sheng-Chun, Xu Tao, Wang Tie-Hai, Cheng Jian-Chun. Chin. Phys. B, 2010, 19(4): 044301.
No Suggested Reading articles found!