ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A scheme for Sagnac-effect quantum enhancement with Fock state light input |
Kun Chen(陈坤), Shu-Xin Chen(陈树新), De-Wei Wu(吴德伟), Chun-Yan Yang(杨春燕), Qiang Miao(苗强) |
Information and Navigation College, Airforce Engineering University, Xi'an 710077, China |
|
|
Abstract Sagnac effect enhancement can improve optical gyro precision. For a certain input intensity, we suggest that the other input port of beam splitter (BS) should be fed with some quantum light to break through shot noise limit (SNL) to improve Sagnac effect without increasing radiation-pressure noise (NRP). We design a Sagnac effect quantum enhancement criterion (SQEC) to judge whether some quantum light can enhance Sagnac effect and present a Sagnac effect enhancement scheme that utilizing Fock state light and parity measurement technique to extract the output phase. The results of the theoretical analysis show that the maximum sensitivity can be reached at θ = 0, and the phase precision can break through SNL and even achieve Heisenberg limit (HL). When the Fock state average photon number n is far less than coherent state, the minimum measurable angular rate is improved with √2n+1 times, which can deduce shot noise and increase NRP little.
|
Received: 19 December 2016
Revised: 23 May 2017
Accepted manuscript online:
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
06.20.-f
|
(Metrology)
|
|
06.30.Gv
|
(Velocity, acceleration, and rotation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61573372 and 61603413). |
Corresponding Authors:
Shu-Xin Chen
E-mail: chenshuxin68@163.com
|
Cite this article:
Kun Chen(陈坤), Shu-Xin Chen(陈树新), De-Wei Wu(吴德伟), Chun-Yan Yang(杨春燕), Qiang Miao(苗强) A scheme for Sagnac-effect quantum enhancement with Fock state light input 2017 Chin. Phys. B 26 094212
|
[1] |
Joseph S 2014 Gen. Relativ. Gravit. 46 1710
|
[2] |
Jing J, Li Y, Zhang Z C, Wu C X and Song N F 2016 Chin. Phys. B 25 084213
|
[3] |
Wu Q, Yu J L, Wang J, Wang W R, Jia S, Huang G B, Hei K F and Li L J 2015 Acta Phys. Sin. 64 044205 (in Chinese)
|
[4] |
Liu J, Zhang T E, Zhang W, Lei L H, Xue C Y, Zhang W D and Tang J 2015 Acta Phys. Sin. 64 107802 (in Chinese)
|
[5] |
Luo C, Huang J, Zhang X and Lee C 2017 Phys. Rev. A 95 023608
|
[6] |
Gauguet A, Canuel B, Leveque T, Chaibi W and Landragin A 2009 Phys. Rev. A 80 063604
|
[7] |
Tackmann G, Berg P, Schubert C, Abend S, Gilowski M, Ertmer W and Rasel E M 2012 New J. Phys. 14 015002
|
[8] |
Rico-Gutierrez L M, Spiller T P and Dunningham J A 2015 New J. Phys. 17 043022
|
[9] |
Campbell W C and Hamilton P 2016 arXiv:1609.00659
|
[10] |
Schreiber K U, Klugel T, Wells J P R, Hurst R B and Gebauer A 2011 Phys. Rev. Lett. 107 173904
|
[11] |
Giovanetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
|
[12] |
William N P and Jonathan P D 2010 New. J. Phys. 12 083014
|
[13] |
Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
|
[14] |
Bertocchi G, Alibart O, Ostrowsky D B, Tanzilli S and Baldi P 2006 J. Phys. B 39 1011
|
[15] |
Kolkiran and Agarwal G S 2007 Opt. Express 15 679
|
[16] |
Caves C M 1981 Phys.Rev. D 23 1693
|
[17] |
Chen K, Chen S X, Wu D W, Yang C Y and Wu H 2016 Acta Phys. Sin. 65 054203 (in Chinese)
|
[18] |
Chen K, Chen S X, Wu D W, Yang C Y, Wang X, Li X, Wu H and Liu Z W 2016 Acta Phys. Sin. 65 194203 (in Chinese)
|
[19] |
Barrett B, Geiger R and Dutta I 2014 C. R. Physique 15 875
|
[20] |
Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp. 101-106
|
[21] |
Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
|
[22] |
Alex M 2006 Phys. Rev. A 73 033821
|
[23] |
Luca P and Augusto S 2014 arXiv: 1411.5164v1 [quant-ph]
|
[24] |
Luca P and Augusto S 2013 Phys. Rev. Lett. 110 163604
|
[25] |
Baune C, Gniesmer J, Schönbeck A, Vollmer C E, Fiurasek J and Schnabel R 2015 Opt. Express 23 16035
|
[26] |
Jaewoo J, Kimin P, Hyunseok J, William J M, Kae N and Timothy P S 2012 Phys. Rev. A 86 043828
|
[27] |
Gerry C C 2000 Phys. Rev. A 61 043811
|
[28] |
Campos R A, Gerry C C and Benmoussa A 2003 Phys. Rev. A 68 023810
|
[29] |
Hu L Y, Wei C P, Fang J, Huang J H and Liu C J 2014 Opt. Commun. 323 68
|
[30] |
Xu X F and Fan H Y 2015 Chin. Phys. B 24 010301
|
[31] |
Tan Q S, Liao J Q, Wang X G and Franco N 2014 Phys. Rev. A 89 053822
|
[32] |
Luca P and Augusto S 2009 Phys. Rev. Lett. 102 100401
|
[33] |
Windhagera A, Suda M, Pacher C, Peev M and Poppe A 2011 Opt. Commun. 284 1907
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|