Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 036802    DOI: 10.1088/1674-1056/26/3/036802
Special Issue: TOPICAL REVIEW — 2D materials: physics and device applications
TOPICAL REVIEW—2D materials: physics and device applications Prev   Next  

Light-matter interaction of 2D materials: Physics and device applications

Zi-Wei Li(李梓维)1,2, Yi-Han Hu(胡义涵)1, Yu Li(李瑜)1,2, Zhe-Yu Fang(方哲宇)1,2,3
1 School of Physics, State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871, China;
2 Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

In the last decade, the rise of two-dimensional (2D) materials has attracted a tremendous amount of interest for the entire field of photonics and opto-electronics. The mechanism of light-matter interaction in 2D materials challenges the knowledge of materials physics, which drives the rapid development of materials synthesis and device applications. 2D materials coupled with plasmonic effects show impressive optical characteristics, involving efficient charge transfer, plasmonic hot electrons doping, enhanced light-emitting, and ultrasensitive photodetection. Here, we briefly review the recent remarkable progress of 2D materials, mainly on graphene and transition metal dichalcogenides, focusing on their tunable optical properties and improved opto-electronic devices with plasmonic effects. The mechanism of plasmon enhanced light-matter interaction in 2D materials is elaborated in detail, and the state-of-the-art of device applications is comprehensively described. In the future, the field of 2D materials holds great promise as an important platform for materials science and opto-electronic engineering, enabling an emerging interdisciplinary research field spanning from clean energy to information technology.

Keywords:  2D materials      light-matter interaction      2D optoelectronic devices      surface plasmon  
Received:  29 August 2016      Revised:  17 October 2016      Published:  05 March 2017
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  63.20.kk (Phonon interactions with other quasiparticles)  
  85.60.-q (Optoelectronic devices)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  

Project supported by the National Basic Research Program of China (Grant No. 2015CB932403), the National Natural Science Foundation of China (Grant Nos. 61422501, 11674012, 11374023, and 61521004), Beijing Natural Science Foundation, China (Grant No. L140007), Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201420), and National Program for Support of Top-notch Young Professionals, China.

Corresponding Authors:  Zhe-Yu Fang     E-mail:

Cite this article: 

Zi-Wei Li(李梓维), Yi-Han Hu(胡义涵), Yu Li(李瑜), Zhe-Yu Fang(方哲宇) Light-matter interaction of 2D materials: Physics and device applications 2017 Chin. Phys. B 26 036802

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J and Ismach A F 2013 ACS Nano 7 2898
[3] Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Nanotech. 8 634
[4] Wang X, Gong Y, Shi G, Chow W L, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z, Ringe E, Tay B K and Ajayan P M 2014 ACS Nano 8 5125
[5] Yan K, Fu L, Peng H and Liu Z 2013 Acc. Chem. Res. 46 2263
[6] Koppens F, Mueller T, Avouris P, Ferrari A, Vitiello M and Polini M 2014 Nat. Nanotech. 9 780
[7] Wang W, Klots A, Prasai D, Yang Y, Bolotin K I and Valentine J 2015 Nano Lett. 15 7440
[8] Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P, Babakhani A, Idrobo J C, Vajtai R, Lou J and Ajayan P M 2013 Nat. Nanotech. 8 119
[9] Han D D, Zhang Y L, Jiang H B, Xia H, Feng J, Chen Q D, Xu H L and Sun H B 2015 Adv. Mater. 27 332
[10] Lemme M C, Echtermeyer T J, Baus M and Kurz H 2007 IEEE Electron Device Lett. 28 282
[11] Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y and Duan X 2010 Nature 467 305
[12] Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J C, Ajayan P M and Lou J 2013 Nat. Mater. 12 754
[13] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[14] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[15] Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2013 Nat. Mater. 12 207
[16] Li Z, Xiao Y, Gong Y, Wang Z, Kang Y, Zu S, Ajayan P M, Nordlander P and Fang Z 2015 ACS Nano 9 10158
[17] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[18] Hui Y Y, Liu X, Jie W, Chan N Y, Hao J, Hsu Y T, Li L J, Guo W and Lau S P 2013 ACS Nano 7 7126
[19] He K, Poole C, Mak K F and Shan J 2013 Nano Lett. 13 2931
[20] Ji J, Zhang A, Xia T, Gao P, Jie Y, Zhang Q and Zhang Q 2016 Chin. Phys. B 25 077802
[21] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[22] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotech. 8 497
[23] Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y and Li L J 2014 Sci. Rep. 4 3826
[24] Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov K and Ferrari A 2007 Nano Lett. 7 2711
[25] Blake P, Hill E, Neto A C, Novoselov K, Jiang D, Yang R, Booth T and Geim A 2007 Appl. Phys. Lett. 91 063124
[26] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K 2008 Science 320 1308
[27] Lui C H, Mak K F, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 127404
[28] Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, de Abajo F J, Nordlander P, Zhu X and Halas N J 2014 Nano Lett. 14 299
[29] Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan P M, Nordlander P, Halas N J and García de Abajo F J 2013 ACS Nano 7 2388
[30] Ayari A, Cobas E, Ogundadegbe O and Fuhrer M S 2007 J. Appl. Phys. 101 14507
[31] Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Commun. 4 1474
[32] Lin Y, Ling X, Yu L, Huang S, Hsu A L, Lee Y H, Kong J, Dresselhaus M S and Palacios T 2014 Nano Lett. 14 5569
[33] Dhakal K P, Duong D L, Lee J, Nam H, Kim M, Kan M, Lee Y H and Kim J 2014 Nanoscale 6 13028
[34] Korn T, Heydrich S, Hirmer M, Schmutzler J and Schuller C 2011 Appl. Phys. Lett. 99 102109
[35] Lazzeri M, Piscanec S, Mauri F, Ferrari A and Robertson J 2005 Phys. Rev. Lett. 95 236802
[36] Kampfrath T, Perfetti L, Schapper F, Frischkorn C and Wolf M 2005 Phys. Rev. Lett. 95 187403
[37] Ye R, Xiang C, Lin J, Peng Z, Huang K, Yan Z, Cook N P, Samuel E L, Hwang C C, Ruan G, Ceriotti G, Raji A R, Marti A A and Tour J M 2013 Nat. Commun. 4 2943
[38] Gokus T, Nair R, Bonetti A, Bohmler M, Lombardo A, Novoselov K, Geim A, Ferrari A and Hartschuh A 2009 ACS Nano 3 3963
[39] Lu J, Yang J X, Wang J, Lim A, Wang S and Loh K P 2009 ACS Nano 3 2367
[40] Ye R, Peng Z, Metzger A, Lin J, Mann J A, Huang K, Xiang C, Fan X, Samuel E L, Alemany L B, Marti A A and Tour J M 2015 ACS Appl. Mater. Interfaces 7 7041
[41] Li L, Wu G, Yang G, Peng J, Zhao J and Zhu J J 2013 Nanoscale 5 4015
[42] Korn T, Heydrich S, Hirmer M, Schmutzler J and Schüller C 2011 Appl. Phys. Lett. 99 102109
[43] Newaz A, Prasai D, Ziegler J, Caudel D, Robinson S, Haglund Jr R and Bolotin K 2013 Solid State Commun. 155 49
[44] Nan H, Wang Z, Wang W, Liang Z, Lu Y, Chen Q, He D, Tan P, Miao F and Wang X 2014 ACS Nano 8 5738
[45] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944
[46] Fang Z and Zhu X 2013 Adv. Mater. 25 3840
[47] Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H, Nordlander P and Halas N J 2012 ACS Nano 6 10222
[48] Jiang R, Li B, Fang C and Wang J 2014 Adv. Mater. 26 5274
[49] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[50] Huang T, Wang J, Li Z, Liu W, Lin F, Fang Z and Zhu X 2016 Chin. Phys. B 25 087302
[51] Zhang Y and Wang X 2015 Chin. Phys. B 24 057301
[52] Chen J, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Garcia de Abajo F J, Hillenbrand R and Koppens F H 2012 Nature 487 77
[53] Boltasseva A and Atwater H A 2011 Science 331 290
[54] Wang Y, Ou J Z, Chrimes A F, Carey B J, Daeneke T, Alsaif M M, Mortazavi M, Zhuiykov S, Medhekar N, Bhaskaran M, Friend J R, Strano M S and Kalantar-Zadeh K 2015 Nano Lett. 15 883
[55] Atwater H A and Polman A 2010 Nat. Phys. 9 205
[56] Xu D, Wang X, Huang Y, Ouyang S, He H and He H 2015 Chin. Phys. B 24 024205
[57] Giannini V, Fernández-Domínguez A I, Sonnefraud Y, Roschuk T, Fernández-García R and Maier S A 2010 Small 22 2498
[58] Yu Y, Ji Z, Zu S, Du B, Kang Y, Li Z, Zhou Z, Shi K and Fang Z 2016 Adv. Funct. Mater. 26 6394
[59] Kang Y, Najmaei S, Liu Z, Bao Y, Wang Y, Zhu X, Halas N J, Nordlander P, Ajayan P M and Lou J 2014 Adv. Mater. 26 6467
[60] Liu W, Lee B, Naylor C H, Ee H S, Park J, Johnson A T C and Agarwal R 2016 Nano Lett. 16 1262
[61] Wang S, Li S, Chervy T, Shalabney A, Azzini S, Orgiu E, Hutchison J A, Genet C, Samorí P and Ebbesen T W 2016 Nano Lett. 16 4368
[62] Zu S, Li B, Gong Y, Li Z, Ajayan P M and Fang Z 2016 Adv. Func. Mater.
[63] Wang Z, Dong Z, Gu Y, Chang Y H, Zhang L, Li L J, Zhao W, Eda G, Zhang W, Grinblat G, Maier S A, Yang J K, Qiu C W and Wee A T 2016 Nat. Commun. 7 11283
[64] Akselrod G M, Ming T, Argyropoulos C, Hoang T B, Lin Y, Ling X, Smith D R, Kong J and Mikkelsen M H 2015 Nano Lett. 15 3578
[65] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
[66] Huang M, Chen D, Zhang L and Zhou J 2016 Chin. Phys. B 25 057303
[67] Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W, Johnson A C and Agarwal R 2015 Nano Lett. 15 3646
[68] Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P and Halas N J 2012 Nano Lett. 12 3808
[69] Echtermeyer T, Britnell L, Jasnos P, Lombardo A, Gorbachev R, Grigorenko A, Geim A, Ferrari A and Novoselov K 2011 Nat. Commun. 2 458
[70] Britnell L, Ribeiro R, Eckmann A, Jalil R, Belle B, Mishchenko A, Kim Y J, Gorbachev R, Georgiou T and Morozov S 2013 Science 340 1311
[71] Miao J, Hu W, Jing Y, Luo W, Liao L, Pan A, Wu S, Cheng J, Chen X and Lu W 2015 Small 11 2392
[72] Yu S H, Lee Y, Jang S K, Kang J, Jeon J, Lee C, Lee J Y, Kim H, Hwang E and Lee S 2014 ACS Nano 8 8285
[73] Pak J, Jang J, Cho K, Kim T Y, Kim J K, Song Y, Hong W K, Min M, Lee H and Lee T 2015 Nanoscale 7 18780
[74] Eginligil M, Cao B, Wang Z, Shen X, Cong C, Shang J, Soci C and Yu T 2015 Nat. Commun. 6 7636
[75] Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y and Wang F 2014 Nat. Nanotech. 9 682
[76] He J, Kumar N, Bellus M Z, Chiu H Y, He D, Wang Y and Zhao H 2014 Nat. Commun. 5 5622
[77] Rivera P, Schaibley J R, Jones A M, Ross J S, Wu S, Aivazian G, Klement P, Seyler K, Clark G, Ghimire N J, Yan J, Mandrus D G, Yao W and Xu X 2015 Nat. Commun. 6 6242
[78] Lauchner A, Schlather A E, Manjavacas A, Cui Y, McClain M J, Stec G J, García de Abajo F J, Nordlander P and Halas N J 2015 Nano Lett. 15 6208
[79] Manjavacas A, Marchesin F, Thongrattanasiri S, Koval P, Nordlander P, Sanchez-Portal D and Garciía de Abajo F J 2013 ACS Nano 7 3635
[80] Li Z, Ye R, Feng R, Kang Y, Zhu X, Tour J M and Fang Z 2015 Adv. Mater. 27 5235
[81] Kang Y, Gong Y, Hu Z, Li Z, Qiu Z, Zhu X, Ajayan P M and Fang Z 2015 Nanoscale 7 4482
[82] Najmaei S, Mlayah A, Arbouet A, Girard C, Léotin J and Lou J 2014 ACS Nano 8 12682
[83] Wu S, Buckley S, Schaibley J R, Feng L, Yan J, Mandrus D G, Hatami F, Yao W, Vuckovic J, Majumdar A and Xu X 2015 Nature 520 69
[84] Liu X, Galfsky T, Sun Z, Xia F, Lin E, Kéna-Cohen S and Menon V M 2014 Nat. Photon. 9 30
[85] Yu T and Wu M W 2014 Phys. Rev. B 89 205436
[86] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotech. 7 494
[87] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[88] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
[89] Yang W, Shang J, Wang J, Shen X, Cao B, Peimyoo N, Zou C, Chen Y, Wang Y, Cong C, Huang W and Yu T 2016 Nano Lett. 16 1560
[1] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[2] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[3] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[4] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[5] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[6] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[7] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[8] Selective excitation of multipolar surface plasmon in a graphene-coated dielectric particle by Laguerre Gaussian beam
Yang Yang(杨阳), Guanghua Zhang(张光华), Xiaoyu Dai(戴小玉). Chin. Phys. B, 2020, 29(5): 057302.
[9] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[10] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
[11] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[12] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[13] Fiber cladding SPR bending sensor characterized by two parameters
Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yong Wei(魏勇), Yudong Su(苏于东), Ping Wu(吴萍), Lingling Li(李玲玲), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2020, 29(12): 120701.
[14] Sensitivity enhancement of WS2-coated SPR-based optical fiber biosensor for detecting glucose concentration
Yun Cai(蔡云), Wei Li(李卫), Ye Feng(冯烨), Jian-Sheng Zhao(赵建胜), Gang Bai(白刚), Jie Xu(许杰), Jin-Ze Li(李金泽). Chin. Phys. B, 2020, 29(11): 110701.
[15] Effect of recombination process in femtosecond laser-induced modification on Ge crystal
Jia-Qi Ju(居家奇), Zi-Yao Qin(秦子尧), Ju-Kun Liu(刘聚坤), Hong-Wei Zhao(赵宏伟), Yao-Qing Huang(黄耀清), Rong-Rong Hu(胡蓉蓉), Hua Wu(吴华). Chin. Phys. B, 2020, 29(11): 114208.
No Suggested Reading articles found!