Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 063201    DOI: 10.1088/1674-1056/23/6/063201

Fast high-resolution nuclear magnetic resonance spectroscopy through indirect zero-quantum coherence detection in inhomogeneous fields

Ke Han-Ping, Chen Hao, Lin Yan-Qin, Wei Zhi-Liang, Cai Shu-Hui, Zhang Zhi-Yong, Chen Zhong
Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
Abstract  In many cases, high-resolution nuclear magnetic resonance (NMR) spectra are virtually impossible to obtain by conventional nuclear magnetic resonance methods because of inhomogeneity of magnetic field and inherent heterogeneity of sample. Although conventional intramolecular zero-quantum coherence (ZQC) can be used to obtain high-resolution spectrum in inhomogeneous field, the acquisition takes rather long time. In this paper, a spatially encoded intramolecular ZQC technique is proposed to fast acquire high-resolution NMR spectrum in inhomogeneous field. For the first time, the gradient-driven decoding technique is employed to selectively acquire intramolecular ZQC signals. Theoretical analyses and experimental observations demonstrate that high-resolution NMR spectral information can be retrieved within several scans even when the field inhomogeneity is severe enough to erase most spectral information. This work provides a new way to enhance the acquisition efficiency of high-resolution intramolecular ZQC spectroscopy in inhomogeneous fields.
Keywords:  nuclear magnetic resonance      intramolecular zero-quantum coherence      inhomogeneous magnetic fields      spatial encoding  
Received:  16 September 2013      Revised:  19 November 2013      Published:  15 June 2014
PACS:  32.30.Dx (Magnetic resonance spectra)  
  82.56.-b (Nuclear magnetic resonance)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275161 and 11105114).
Corresponding Authors:  Lin Yan-Qin, Cai Shu-Hui     E-mail:;

Cite this article: 

Ke Han-Ping, Chen Hao, Lin Yan-Qin, Wei Zhi-Liang, Cai Shu-Hui, Zhang Zhi-Yong, Chen Zhong Fast high-resolution nuclear magnetic resonance spectroscopy through indirect zero-quantum coherence detection in inhomogeneous fields 2014 Chin. Phys. B 23 063201

[1] Meriles C A, Sakellariou D, Heise H, Moule A J and Pines A 2001 Science 293 82
[2] Hurlimann M D 2007 J. Magn. Reson. 184 114
[3] Arthanari H, Frueh D, Wagner G, Pryor B and Khaneja N 2008 J. Chem. Phys. 128 214503
[4] Chen S, Zhang X Q, Cai S H and Chen Z 2008 Chin. Phys. B 17 915
[5] Zheng S K, Chen Z, Chen Z W and Zhong J H 2001 Chin. Phys. 10 558
[6] Vathyam S, Lee S and Warren W S 1996 Science 272 92
[7] Jiang B, Liu H L, Liu M L, Ye C H and Mao X 2008 Chem. Phys. 351 33
[8] Lin Y L, Zhang Z Y, Cai S H and Chen Z 2011 J. Am. Chem. Soc. 133 7632
[9] de Graaf R A, Rothman D L and Behar K L 2007 J. Magn. Reson. 187 320
[10] de Graaf R A, Klomp D W, Luijten P R and Boer V O 2013 Magn. Reson. Med. 10.1002/mrm.24701
[11] Schanda P and Brutscher B 2005 J. Am. Chem. Soc. 127 8014
[12] Stern A S, Li K B and Hoch J C 2002 J. Am. Chem. Soc. 124 1982
[13] Kupce E and Freeman R 2004 J. Am. Chem. Soc. 126 6429
[14] Kupce E and Freeman R 2005 J. Magn. Reson. 173 317
[15] Coggins B E and Zhou P 2006 J. Magn. Reson. 182 84
[16] Coggins B E and Zhou P 2007 J. Magn. Reson. 184 207
[17] Coggins B E and Zhou P 2008 J. Biomol. NMR 42 225
[18] Jiang B, Jiang X W, Xiao N, Zhang X, Jiang L, Mao X A and Liu M L 2010 J. Magn. Reson. 204 165
[19] Mandelshtam V A, Taylor H S and Shaka A J 1998 J. Magn. Reson. 133 304
[20] Kupce E and Freeman R 2003 J. Magn. Reson. 162 300
[21] Kupce E and Freeman R 2003 J. Magn. Reson. 162 158
[22] Kupce E and Freeman R 2003 J. Magn. Reson. 163 56
[23] Frydman L, Lupulescu A and Scherf T 2003 J. Am. Chem. Soc. 125 9204
[24] Frydman L, Scherf T and Lupulescu A 2002 Proc. Nat. Acad. Sci. USA 99 15858
[25] Tal A, Shapira B and Frydman L 2005 J. Magn. Reson. 176 107
[26] Wu C, Zhao M F, Cai S H, Lin Y L and Chen Z 2010 J. Magn. Reson. 204 82
[27] Panek R, Granwehr J, Leggett J and Kockenberger W 2010 Phys. Chem. Chem. Phys. 12 5771
[28] Pelupessy P 2003 J. Am. Chem. Soc. 125 12345
[29] Herrera A, Fernandez-Valle E, Martinez-Alvarez R, Molero D, Pardo Z D, Saez E and Gal M 2009 Angew. Chem. Int. Ed. 48 6274
[30] Zhang Z Y, Chen H, Wu C, Wu R, Cai S H and Chen Z 2013 J. Magn. Reson. 227 39
[31] Giraudeau P and Akoka S 2007 J. Magn. Reson. 186 352
[32] Roussel T, Giraudeau P, Rainey H, Akoka S and Cavassila S 2012 J. Magn. Reson. 215 50
[33] Shrot Y and Frydman L 2008 J. Magn. Reson. 195 226
[34] Gal M, Schanda P, Brutscher B and Frydman L 2007 J. Am. Chem. Soc. 129 1372
[35] Giraudeau P, Shrot Y and Frydman L 2009 J. Am. Chem. Soc. 131 13902
[36] Tal A and Frydman L 2010 Prog. Nucl. Magn. Reson. Spectrosc. 57 241
[37] Pelupessy P, Duma L and Bodenhausen G 2008 J. Magn. Reson. 194 169
[1] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[2] High-magnetic-field induced charge order in high-Tc cuprate superconductors
L X Zheng(郑立玄), J Li(李建), T Wu(吴涛). Chin. Phys. B, 2019, 28(11): 117402.
[3] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
[4] Nuclear magnetic resonance measurement station in SECUF using hybrid superconducting magnets
Zheng Li(李政), Guo-qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077404.
[5] Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077401.
[6] NMR evidence of charge fluctuations in multiferroic CuBr2
Rui-Qi Wang(王瑞琦), Jia-Cheng Zheng(郑家成), Tao Chen(陈涛), Peng-Shuai Wang(王朋帅), Jin-Shan Zhang(张金珊), Yi Cui(崔祎), Chong Wang(王冲), Yuan Li(李源), Sheng Xu(徐胜), Feng Yuan(袁峰), Wei-Qiang Yu(于伟强). Chin. Phys. B, 2018, 27(3): 037502.
[7] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
[8] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
[9] Parameter analysis for a nuclear magnetic resonance gyroscope based on bf133Cs-129Xe/131Xe
Da-Wei Zhang(张大伟), Zheng-Yi Xu(徐正一), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(2): 023201.
[10] Interfacial transport in lithium-ion conductors
Shaofei Wang(王少飞) and Liquan Chen(陈立泉). Chin. Phys. B, 2016, 25(1): 018202.
[11] Review of nuclear magnetic resonance studies on iron-based superconductors
Ma Long, Yu Wei-Qiang. Chin. Phys. B, 2013, 22(8): 087414.
[12] Quenched Fe moment in the collapsed tetragonal phase of Ca1-xPrxFe2As2
Ma Long, Gi Gao-Feng, Dai Jia, Saha S R, Drye T, Paglione J, Yu Wei-Qiang. Chin. Phys. B, 2013, 22(5): 057401.
[13] Study on signal intensity of low field nuclear magnetic resonance via indirect coupling measurement
Jiang Feng-Ying, Wang Ning, Jin Yi-Rong, Deng Hui, Tian Ye, Lang Pei-Lin, Li Jie, Chen Ying-Fei, Zheng Dong-Ning. Chin. Phys. B, 2013, 22(4): 047401.
[14] Robustness of quantum discord to sudden death in nuclear magnetic resonance
Xu Jian-Wei,Chen Qi-Hui. Chin. Phys. B, 2012, 21(4): 040302.
[15] A new solvent suppression method via radiation damping effect
Cui Xiao-Hong, Peng Ling, Zhang Zhen-Min, Cai Shu-Hui, Chen Zhong. Chin. Phys. B, 2011, 20(11): 118201.
No Suggested Reading articles found!