Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 114210    DOI: 10.1088/1674-1056/19/11/114210
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Modification of the spontaneous emission of quantum dots near the surface of a three-dimensional colloidal photonic crystal

Liu Zheng-Qi(刘正奇)a), Feng Tian-Hua(冯天华) a), Dai Qiao-Feng(戴峭峰)a), Wu Li-Jun(吴立军)a), Lan Sheng(兰胜)a)†, Ding Cai-Rong(丁才蓉)b), Wang He-Zhou(汪河洲)b), and Gopal Achanta Venuc)
a Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; b State Key Laboratory of Optoelectronic Materials and Technologies, Zhongshan (Sun Yat-Se14) University, Guangzhou 510275, China; c Department of Condensed Matter Physics and Material Science, Tata Institute of Fundamental Research, Homi Bhabha Road,Mumbai 400005, India
Abstract  This paper demonstrates experimentally and numerically that a significant modification of spontaneous emission rate can be achieved near the surface of a three-dimensional photonic crystal. In experiments, semiconductor core-shell quantum dots are intentionally confined in a thin polymer film on which a three-dimensional colloidal photonic crystal is fabricated. The spontaneous emission rate of quantum dots is characterised by conventional and time-resolved photoluminescence (PL) measurements. The modification of the spontaneous emission rate, which is reflected in the change of spectral shape and PL lifetime, is clearly observed. While an obvious increase in the PL lifetime is found at most wavelengths in the band gap, a significant reduction in the PL lifetime by one order of magnitude is observed at the short-wavelength band edge. Numerical simulation reveals a periodic modulation of spontaneous emission rate with decreasing modulation strength when an emitter is moved away from the surface of the photonic crystal. It is supported by the fact that the modification of spontaneous emission rate is not pronounced for quantum dots distributed in a thick polymer film where both enhancement and suppression are present simultaneously. This finding provides a simple and effective way for improving the performance of light emitting devices.
Keywords:  spontaneous emission      colloidal photonic crystal      semiconductor quantum dot      time-resolved photoluminescence  
Received:  25 January 2010      Revised:  13 April 2010      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  78.55.Kz (Solid organic materials)  
  78.67.Hc (Quantum dots)  
  82.70.Dd (Colloids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974060 and 10774050) and the Program for Innovative Research Team of the Higher Education in Guangdong, China (Grant No. 06CXTD005).

Cite this article: 

Liu Zheng-Qi(刘正奇), Feng Tian-Hua(冯天华), Dai Qiao-Feng(戴峭峰), Wu Li-Jun(吴立军), Lan Sheng(兰胜), Ding Cai-Rong(丁才蓉), Wang He-Zhou(汪河洲), and Gopal Achanta Venu Modification of the spontaneous emission of quantum dots near the surface of a three-dimensional colloidal photonic crystal 2010 Chin. Phys. B 19 114210

[1] Aoki K, Guimard D, Nishioka M, Nomura M, Iwamoto S and Arakawa Y 2008 Nat. Photon. 2 688
[2] Shen J, Zhang J Y, Han X D, Wang Z Y, Shen L and Cui Y P 2005 em Chin. Opt. Lett. 28 1671
[3] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[4] Reitzenstein S, B"ockler C, Bazhenov A, Gorbunov A, L"offler A, Kamp M, Kulakovskii V D and Forchel A 2008 Opt. Express 16 4848
[5] Colombelli R, Srinivasan K, Troccoli M, Painter O, Gmachl C F, Tennant D M, Sergent A M, Sivco D L, Cho A Y and Capasso F 2003 Science 302 1374
[6] Strauf S, Hennessy K, Rakher M T, Choi Y S, Badolato A, Andreani L C, Hu E L, Petroff P M and Bouwmeester D 2006 Phys. Rev. Lett. 96 127404
[7] Pelton M, Santori C, Vuvckovi'c J, Zhang B Y, Solomon G S, Plant J and Yamamoto Y 2002 Phys. Rev. Lett. 89 233602
[8] Chang W H, Chen W Y, Chang H S, Hsieh T P, Chyi J I and Hsu T M 2006 Phys. Rev. Lett. 96 117401
[9] Englund D, Fattal D, Waks E, Solomon G, Zhang B Y, Nakaoka T, Arakawa Y, Yamamoto Y and Vuvckovi'c J 2005 Phys. Rev. Lett. 95 013904
[10] Lu J H, Meng Z M, Liu H Y, Feng T H, Dai Q F, Wu L J, Hu W and Lan S 2009 Chin. Phys. B 18 4333
[11] Li Z Y, Lin L L and Zhang Z Q 2000 Phys. Rev. Lett. 84 4341
[12] Barth M M, Gruber A and Cichos F 2005 Phys. Rev. B 72 085129
[13] Megens M, Wijnhoven J E G J, Lagendijk A and Vos W L 1999 Phys. Rev. A 59 4727
[14] Martorell J and Lawandy N M 1990 Phys. Rev. Lett. 65 1877
[15] Lodahl P, Floris van Driel A, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D and Vos W L 2004 Nature 430 654
[16] Li J F, Jia B H, Zhou G Y, Bullen Craig, Serbin J and Gu M 2007 Adv. Mater. 19 3276
[17] Zhang J Y, Wang X Y and Xiao M 2003 Opt. Lett. 28 1430
[18] O' Brien P G, Kherani N P, Zukotynski S, Ozin G A, Vekris E, Tetreault N, Chutinan A, John S, Mihi A and M'higuez H 2007 Adv. Mater. 19 4177
[19] Ishizaki K and Noda S 2009 Nature 460 367
[20] Ganesh N, Zhang W, Mathias P C, Chow E, Soares J A N T, Malyarchuk V, Smith A D and Cunninghan B T 2007 Nat. Nanotech. 2 515
[21] Liu Z Q, Feng T H, Dai Q F, Wu L J and Lan S 2009 Chin. Phys. B 18 2383
[22] Zheng Z Y, Liu X Z, Luo Y H, Cheng B Y, Zhang D Z, Meng Q Z and Wang Y R 2007 Appl. Phys. Lett. 90 051910
[23] Joannopoulos J D, Johonson S D, Winn J N and Meade R D 2007 em Photonic Crystals: Molding the Flow of Light (New Jersey: Princeton University Press) p89
[24] A software developed by Rsoft Design Group (http://www.rsoftdesign.com) is used for FDTD simulation
[25] Zhang J Y, Wang X Y and Xiao M 2002 Opt. Lett. 27 1253
[26] Snoeks E, Lagendijk A and Polman A 1995 Phys. Rev. Lett. 74 2459 endfootnotesize
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[3] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[4] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[5] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[6] Pure spin-current diode based on interacting quantum dot tunneling junction
Zhengzhong Zhang(张正中), Min Yu(余敏), Rui Bo(薄锐), Chao Wang(王超), and Hao Liu(刘昊). Chin. Phys. B, 2021, 30(11): 117305.
[7] Temperature and excitation dependence of stimulated emission and spontaneous emission in InGaN epilayer
Xuee An(安雪娥), Zhengjun Shang(商正君), Chuanhe Ma(马传贺), Xinhe Zheng(郑新和), Cuiling Zhang(张翠玲), Lin Sun(孙琳), Fangyu Yue(越方禹), Bo Li(李波), Ye Chen(陈晔). Chin. Phys. B, 2019, 28(5): 057802.
[8] Spin manipulation in semiconductor quantum dots qubit
Ke Wang(王柯), Hai-Ou Li(李海欧), Ming Xiao(肖明), Gang Cao(曹刚), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(9): 090308.
[9] Demonstration of multi-Watt all-fiber superfluorescent source operating near 980 nm
Yankun Ren(任彦锟), Jianqiu Cao(曹涧秋), Hanyuan Ying(应汉辕), Heng Chen(陈恒), Zhiyong Pan(潘志勇), Shaojun Du(杜少军), Jinbao Chen(陈金宝). Chin. Phys. B, 2018, 27(3): 030703.
[10] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[11] Photodynamics of GaZn-VZn complex defect in Ga-doped ZnO
Ai-Hua Tang(汤爱华), Zeng-Xia Mei(梅增霞), Yao-Nan Hou(侯尧楠), Xiao-Long Du(杜小龙). Chin. Phys. B, 2018, 27(11): 117802.
[12] Phase transition and charge transport through a triple dot device beyond the Kondo regime
Yong-Chen Xiong(熊永臣), Zhan-Wu Zhu(朱占武), Ze-Dong He(贺泽东). Chin. Phys. B, 2018, 27(10): 108503.
[13] Enhancing redshift phenomenon in time-resolved photoluminescence spectra of AlGaN epilayer
Wei Li(李维), Peng Jin(金鹏), Wei-Ying Wang(王维颖), De-Feng Mao(毛德丰), Xu Pan(潘旭), Xiao-Liang Wang(王晓亮), Zhan-Guo Wang(王占国). Chin. Phys. B, 2017, 26(7): 077802.
[14] Spontaneous emission from a microwave-driven four-level atom in an anisotropic photonic crystal
Jiang Li(姜丽), Ren-Gang Wan(万仁刚), Zhi-Hai Yao(姚治海). Chin. Phys. B, 2016, 25(10): 104204.
[15] Steady-state linear optical properties and Kerr nonlinear optical response of a four-level quantum dot with phonon-assisted transition
Yan-Chao She(佘彦超), Ting-Ting Luo(罗婷婷), Wei-Xi Zhang(张蔚曦),Mao-Wu Ran(冉茂武), Deng-Long Wang(王登龙). Chin. Phys. B, 2016, 25(1): 014202.
No Suggested Reading articles found!