Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 064211    DOI: 10.1088/1674-1056/24/6/064211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Graded doping low internal loss 1060-nm InGaAs/AlGaAsquantum well semiconductor lasers

Tan Shao-Yang (谭少阳), Zhai Teng (翟腾), Zhang Rui-Kang (张瑞康), Lu Dan (陆丹), Wang Wei (王圩), Ji Chen (吉晨)
Key Laboratory of Semiconductors Materials, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  Internal loss is a key internal parameter for high power 1060-nm InGaAs/AlGaAs semiconductor laser. In this paper, we discuss the origin of internal loss of 1060-nm InGaAs/GaAs quantum well (QW) AlGaAs separate confinement heterostructure semiconductor laser, and the method to reduce internal loss. By light doping the n-cladding layer, and stepwise doping the p-cladding layer combined with the expanded waveguide layer, a broad area laser with internal loss of 1/cm is designed and fabricated. Ridge waveguide laser with an output power of 350 mW is obtained. The threshold current and slope efficiency near the threshold current are 20 mA and 0.8 W/A, respectively.
Keywords:  internal loss      free carrier absorption      semiconductor laser  
Received:  10 November 2014      Revised:  11 December 2014      Accepted manuscript online: 
PACS:  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.55.Px (Semiconductor lasers; laser diodes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274046, 61335009, 61201103, and 61320106013) and the National High Technology Research and Development Program of China (Grant No. 2013AA014202).
Corresponding Authors:  Tan Shao-Yang     E-mail:  tanshy10@semi.ac.cn
About author:  42.81.Dp; 42.25.Bs; 42.55.Px

Cite this article: 

Tan Shao-Yang (谭少阳), Zhai Teng (翟腾), Zhang Rui-Kang (张瑞康), Lu Dan (陆丹), Wang Wei (王圩), Ji Chen (吉晨) Graded doping low internal loss 1060-nm InGaAs/AlGaAsquantum well semiconductor lasers 2015 Chin. Phys. B 24 064211

[1] Bai J and Chen G 2002 Opt. Laser Technol. 34 333
[2] Lü Y, Xia J, Cheng W, Chen J, Ning G and Liang Z 2010 Opt. Lett. 35 3670
[3] Zhu B, Law M, Rooney J, Shenk S, Yan M F and DiGiovanni D J 2014 Opt. Lett. 39 72
[4] Heumann E, Bär S, Rademaker K, Huber G, Butterworth S, Diening A and Seelert W 2006 Appl. Phys. Lett. 88 061108
[5] Wang X, Erbert G, Wenzel H, Eppich B, Crump P, Ginolas A, Fricke J, Bugge F, Spreemann M and Trnkle G 2012 Semicond. Sci. Technol. 27 015010
[6] Nguyen H K, Hu M H, Li Y, Song K, Visovsky N J, Coleman S and Zah C E 2008 Proc. SPIE 6890
[7] Razeghf M and Yi H 1998 Opto-electronics Rev. 6 81
[8] Yi H, Diaz J, Lane B and Razeghi M 1996 Appl. Phys. Lett. 69 2983
[9] Hayakawa T, Wada M, Yamanaka F, Asano H, Kuniyasu T, Ohgoh T and Fukunaga T 1999 Appl. Phys. Lett. 75 1839
[10] Haug A 1992 Semicond. Sci. Technol. 7 373
[11] Pikhtin N A, Slipchenko S O, Sokolova Z N and Tarasov I S 2004 Semiconductors 38 360
[12] Epitaxy G M B, Gokhale M R, Dries J C, Member S, Studenkov P V, Forrest S R, Garbuzov D Z and Member S 1997 IEEE J. Quantum Electron. 33 2266
[13] Vail E C, Nabiev R F and Chang-Hasnain C J 1994 IEEE Photon. Technol. Lett. 6 98
[14] Slipchenko S O, Pikhtin N A, Fetisova N V, et al. 2003 Tech. Phys. Lett. 29 980
[15] Andreev A Yu, Leshko A Yu, Lyutetskiï A V, et al. 2006 Semiconductors 40 611
[16] Miah M J, Kettler T, Posilovic K, Kalosha V P, Skoczowsky D, Rosales R, Bimberg D, Pohl J and Weyers M 2014 Appl. Phys. Lett. 105 151105
[17] Coldren L A, Corzine S W and Mašanović2012 Diode Lasers and Photonic Integrated Circuits, 2nd edn. (John Wiley & Sons) p. 570
[18] H C Casey Jr and M B 1978 Panish Heterostructure Lasers (New York: Academic 1978; Mir, Moscow, 1981) Part 1
[19] Tan S Y, Zhai T, Lu D, Wang W, Zhang R K and Ji C 2013 Chin. Phys. Lett. 30 114202
[20] Zhai T, Tan S Y, Lu D, Wang W, Zhang R K and Ji C 2014 Chin. Phys. Lett. 31 024203
[21] Tan S Y, Zhai T, Wang W, Zhang R K, Lu D and Ji C 2014 Proc. SPIE, February 1, 2014, San Francisco, California, USA 89651B
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[3] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[4] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[5] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[6] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[7] Chaos generation by a hybrid integrated chaotic semiconductor laser
Ming-Jiang Zhang(张明江), Ya-Nan Niu(牛亚楠), Tong Zhao(赵彤), Jian-Zhong Zhang(张建忠), Yi Liu(刘毅), Yu-Hang Xu(徐雨航), Jie Meng(孟洁), Yun-Cai Wang(王云才), An-Bang Wang(王安帮). Chin. Phys. B, 2018, 27(5): 050502.
[8] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[9] Semiconductor photonic crystal laser
Wanhua Zheng(郑婉华). Chin. Phys. B, 2018, 27(11): 114211.
[10] Square microcavity semiconductor lasers
Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴). Chin. Phys. B, 2018, 27(11): 114212.
[11] Laser frequency locking based on the normal and abnormal saturated absorption spectroscopy of 87Rb
Jian-Hong Wan(万剑宏), Chang Liu(刘畅), Yan-Hui Wang(王延辉). Chin. Phys. B, 2016, 25(4): 044204.
[12] Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback
Zhao Mao-Rong (赵茂戎), Wu Zheng-Mao (吴正茂), Deng Tao (邓涛), Zhou Zhen-Li (周桢力), Xia Guang-Qiong (夏光琼). Chin. Phys. B, 2015, 24(5): 054207.
[13] Theoretical study of the optical gain characteristics of a Ge1-xSnx alloy for a short-wave infrared laser
Zhang Dong-Liang (张东亮), Cheng Bu-Wen (成步文), Xue Chun-Lai (薛春来), Zhang Xu (张旭), Cong Hui (丛慧), Liu Zhi (刘智), Zhang Guang-Ze (张广泽), Wang Qi-Ming (王启明). Chin. Phys. B, 2015, 24(2): 024211.
[14] Very low threshold operation of quantum cascade lasers
Yan Fang-Liang (闫方亮), Zhang Jin-Chuan (张锦川), Yao Dan-Yang (姚丹阳), Liu Feng-Qi (刘峰奇), Wang Li-Jun (王利军), Liu Jun-Qi (刘峻岐), Wang Zhan-Guo (王占国). Chin. Phys. B, 2015, 24(2): 024212.
[15] Synchronous implementation of optoelectronic NOR and XNOR logic gates using parallel synchronization of three chaotic lasers
Yan Sen-Lin (颜森林). Chin. Phys. B, 2014, 23(9): 090503.
No Suggested Reading articles found!